/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "utils/log_adapter.h" #include "common/utils.h" #include "common/common.h" #include "gtest/gtest.h" #include "securec.h" #include "minddata/dataset/include/datasets.h" #include "minddata/dataset/include/status.h" #include "minddata/dataset/include/transforms.h" #include "minddata/dataset/include/iterator.h" #include "minddata/dataset/core/constants.h" #include "minddata/dataset/include/samplers.h" using namespace mindspore::dataset::api; using mindspore::MsLogLevel::ERROR; using mindspore::ExceptionType::NoExceptionType; using mindspore::LogStream; using mindspore::dataset::Tensor; using mindspore::dataset::Status; using mindspore::dataset::BorderType; class MindDataTestPipeline : public UT::DatasetOpTesting { protected: }; TEST_F(MindDataTestPipeline, TestBatchAndRepeat) { // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestTensorOpsAndMap) { // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, RandomSampler(false, 20)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr resize_op = vision::Resize({30, 30}); EXPECT_TRUE(resize_op != nullptr); std::shared_ptr center_crop_op = vision::CenterCrop({16, 16}); EXPECT_TRUE(center_crop_op != nullptr); // Create a Map operation on ds ds = ds->Map({resize_op, center_crop_op}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 40); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, RandomSampler(false, 20)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 1; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr resize_op = vision::Resize({30, 30}); EXPECT_TRUE(resize_op != nullptr); std::shared_ptr random_crop_op = vision::RandomCrop({28, 28}); EXPECT_TRUE(random_crop_op != nullptr); std::shared_ptr center_crop_op = vision::CenterCrop({16, 16}); EXPECT_TRUE(center_crop_op != nullptr); std::shared_ptr uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2); EXPECT_TRUE(uniform_aug_op != nullptr); // Create a Map operation on ds ds = ds->Map({resize_op, uniform_aug_op}); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomFlip) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); EXPECT_TRUE(random_vertical_flip_op != nullptr); std::shared_ptr random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5); EXPECT_TRUE(random_horizontal_flip_op != nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestImageFolderBatchAndRepeat) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) { std::shared_ptr sampl = DistributedSampler(2, 1); EXPECT_NE(sampl, nullptr); sampl = PKSampler(3); EXPECT_NE(sampl, nullptr); sampl = RandomSampler(false, 12); EXPECT_NE(sampl, nullptr); sampl = SequentialSampler(0, 12); EXPECT_NE(sampl, nullptr); std::vector weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1}; sampl = WeightedRandomSampler(weights, 12); EXPECT_NE(sampl, nullptr); std::vector indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}; sampl = SubsetRandomSampler(indices); EXPECT_NE(sampl, nullptr); // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, sampl); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 12); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestPad) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric); EXPECT_TRUE(pad_op1 != nullptr); std::shared_ptr pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge); EXPECT_TRUE(pad_op2 != nullptr); std::shared_ptr pad_op3 = vision::Pad({1, 4}); EXPECT_TRUE(pad_op3 != nullptr); // Create a Map operation on ds ds = ds->Map({pad_op1, pad_op2, pad_op3}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCutOut) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr cut_out1 = vision::CutOut(30, 5); EXPECT_TRUE(cut_out1!= nullptr); std::shared_ptr cut_out2 = vision::CutOut(30); EXPECT_TRUE(cut_out2 != nullptr); // Create a Map operation on ds ds = ds->Map({cut_out1, cut_out2}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalize) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}); EXPECT_TRUE(normalize != nullptr); // Create a Map operation on ds ds = ds->Map({normalize}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestDecode) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr decode = vision::Decode(true); EXPECT_TRUE(decode != nullptr); // Create a Map operation on ds ds = ds->Map({decode}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestShuffleDataset) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Shuffle operation on ds int32_t shuffle_size = 10; ds = ds->Shuffle(shuffle_size); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCifar10Dataset) { // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, 0, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColorAdjust) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr random_color_adjust1 = vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5}); EXPECT_TRUE(random_color_adjust1 != nullptr); std::shared_ptr random_color_adjust2 = vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5}, {0.5, 0.5}); EXPECT_TRUE(random_color_adjust2 != nullptr); std::shared_ptr random_color_adjust3 = vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5}, {0.25, 0.5}); EXPECT_TRUE(random_color_adjust3 != nullptr); std::shared_ptr random_color_adjust4 = vision::RandomColorAdjust(); EXPECT_TRUE(random_color_adjust4 != nullptr); // Create a Map operation on ds ds = ds->Map({random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomRotation) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr random_rotation_op = vision::RandomRotation({-180, 180}); EXPECT_TRUE(random_rotation_op != nullptr); // Create a Map operation on ds ds = ds->Map({random_rotation_op}); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestProjectMap) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_TRUE(ds != nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_TRUE(ds != nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); EXPECT_TRUE(random_vertical_flip_op != nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op}, {}, {}, {"image", "label"}); EXPECT_TRUE(ds != nullptr); // Create a Project operation on ds std::vector column_project = {"image"}; ds = ds->Project(column_project); EXPECT_TRUE(ds != nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_TRUE(ds != nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_TRUE(iter != nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_TRUE(i == 20); // Manually terminate the pipeline iter->Stop(); }