# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # """test_dice""" import math import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import get_metric_fn, Dice def test_classification_dice(): """test_dice""" x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([[0, 1], [1, 0], [0, 1]])) metric = get_metric_fn('dice') metric.clear() metric.update(x, y) dice = metric.eval() assert math.isclose(dice, 0.20467791371802546, abs_tol=0.001) def test_dice_update1(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) metric = Dice(1e-5) metric.clear() with pytest.raises(ValueError): metric.update(x) def test_dice_runtime(): metric = Dice(1e-5) metric.clear() with pytest.raises(RuntimeError): metric.eval()