# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetFloorDiv(nn.Cell): def __init__(self): super(NetFloorDiv, self).__init__() self.floordiv = P.FloorDiv() def construct(self, x, y): return self.floordiv(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_floor_div(): x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) x2_np = np.random.randint(1, 5, (2, 1, 1, 4, 9)).astype(np.float32) y2_np = np.random.randint(1, 5, (2, 3, 4, 4, 9)).astype(np.float32) x3_np = np.random.randint(1, 5, 1).astype(np.float32) y3_np = np.random.randint(1, 5, 1).astype(np.float32) x4_np = np.array(768).astype(np.float32) y4_np = np.array(3072.5).astype(np.float32) x5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) y5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) x6_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int32) y6_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int32) x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) x2 = Tensor(x2_np) y2 = Tensor(y2_np) x3 = Tensor(x3_np) y3 = Tensor(y3_np) x4 = Tensor(x4_np) y4 = Tensor(y4_np) x5 = Tensor(x5_np) y5 = Tensor(y5_np) x6 = Tensor(x6_np) y6 = Tensor(y6_np) context.set_context(mode=context.GRAPH_MODE, device_target='GPU') floor_div = NetFloorDiv() output0 = floor_div(x0, y0) expect0 = np.floor_divide(x0_np, y0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = floor_div(x1, y1) expect1 = np.floor_divide(x1_np, y1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape output2 = floor_div(x2, y2) expect2 = np.floor_divide(x2_np, y2_np) diff2 = output2.asnumpy() - expect2 error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output2.shape == expect2.shape context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') output3 = floor_div(x3, y3) expect3 = np.floor_divide(x3_np, y3_np) diff3 = output3.asnumpy() - expect3 error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output3.shape == expect3.shape output4 = floor_div(x4, y4) expect4 = np.floor_divide(x4_np, y4_np) diff4 = output4.asnumpy() - expect4 error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output4.shape == expect4.shape output5 = floor_div(x5, y5) expect5 = np.floor_divide(x5_np, y5_np) diff5 = output5.asnumpy() - expect5 error5 = np.ones(shape=expect5.shape) * 1.0e-5 assert np.all(diff5 < error5) assert output5.shape == expect5.shape output6 = floor_div(x6, y6) expect6 = np.floor_divide(x6_np, y6_np) diff6 = output6.asnumpy() - expect6 error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output6.shape == expect6.shape