# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.ops import operations as P def sqrt(nptype): np.random.seed(0) x_np = np.random.rand(2, 3, 4, 4).astype(nptype) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") output_ms = P.Sqrt()(Tensor(x_np)) output_np = np.sqrt(x_np) assert np.allclose(output_ms.asnumpy(), output_np) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sqrt_float16(): sqrt(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sqrt_float32(): sqrt(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sqrt_float64(): sqrt(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_rsqrt(): np.random.seed(0) x_np = np.random.rand(2, 3, 4, 4).astype(np.float32) output_ms = P.Rsqrt()(Tensor(x_np)) output_np = 1 / np.sqrt(x_np) assert np.allclose(output_ms.asnumpy(), output_np)