# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.common import dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class NetCholesky(nn.Cell): def __init__(self): super(NetCholesky, self).__init__() self.cholesky = P.Cholesky() def construct(self, x): return self.cholesky(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_cholesky_fp32(): cholesky = NetCholesky() x = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]]).astype(np.float32) output = cholesky(Tensor(x, dtype=mstype.float32)) expect = np.linalg.cholesky(x) tol = 1e-6 assert (np.abs(output.asnumpy() - expect) < tol).all()