# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import composite as C from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class Net(nn.Cell): def __init__(self, reduction="none"): super(Net, self).__init__() self.KLDivLoss = P.KLDivLoss("none") def construct(self, x, y): return self.KLDivLoss(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_binary_cross_entropy_loss(): np.random.seed(42) prediction = np.random.rand(20).astype(np.float32) target = np.random.rand(20).astype(np.float32) net = Net() loss = net(Tensor(prediction), Tensor(target)) expect = [-0.5297444, -0.40738472, -0.5733339, -0.58720195, -0.42922008, -0.31237593, -0.3332863, -0.78742254, -0.6662671, -0.17546377, -0.31526336, -0.46702948, -0.23191005, -0.2512708, -0.20934652, -0.32021108, -0.45477402, -0.278453, -0.5551879, -0.48938933] assert np.allclose(loss.asnumpy(), expect) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, x1, x2, sens): gout = self.grad(self.network)(x1, x2, sens) return gout @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_binary_cross_entropy_loss_grad(): np.random.seed(42) prediction = np.random.rand(20).astype(np.float32) target = np.random.rand(20).astype(np.float32) sens = np.random.rand(20).astype(np.float32) grad = Grad(Net()) dx = grad(Tensor(prediction), Tensor(target), Tensor(sens)) dx1_expect = [-0.07466945, -0.06907414, -0.01004642, -0.3331403, -0.11802178, -0.52019656, -0.06224053, -0.2674369, -0.32387912, -0.00858657, -0.58906615, -0.13217884, -0.06111591, -0.8490888, -0.57735133, -0.7452407, -0.02695603, -0.01914206, -0.03094601, -0.14319494] dx2_expect = [0.0163771, -0.950962, -0.03309895, -0.5481312, 0.01523498, 0.39894313, -0.20858267, -0.27628726, -0.06815486, -0.5134226, 0.46645382, -1.3477919, -2.409831, 0.65787154, 0.4682768, 0.55671424, -0.04362264, -0.36274382, 0.00852979, -0.03639247] assert np.allclose(dx[0].asnumpy(), dx1_expect) assert np.allclose(dx[1].asnumpy(), dx2_expect)