# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ut for batchnorm layer""" import numpy as np import mindspore.nn as nn from mindspore import Tensor from ..ut_filter import non_graph_engine class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bn = nn.BatchNorm2d(num_features=3, eps=1e-5, momentum=0.1) def construct(self, input_x): return self.bn(input_x) @non_graph_engine def test_compile(): net = Net() input_data = Tensor(np.ones([1, 3, 4, 4]).astype(np.float32)) output = net(input_data) print(input_data) print(output.asnumpy())