# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor import mindspore.common.dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class Net(nn.Cell): def __init__(self, axis=0): super(Net, self).__init__() self.unique = P.Unique() self.reshape = P.Reshape() self.concat = P.Concat(axis=axis) def construct(self, x1, x2): out1_unique, _ = self.unique(x1) out2_unique, _ = self.unique(x2) out1_shape = self.reshape(out1_unique, (1, -1, 2)) out2_shape = self.reshape(out2_unique, (1, -1, 2)) return self.concat((out1_shape, out2_shape)) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_dynamic_concat_cpu(): x1 = Tensor(np.array([1, 2, 3, 1, 4, 2]), mstype.int32) x2 = Tensor(np.array([1, 2, 3, 4, 5, 6]), mstype.int32) net = Net(axis=1) output = net(x1, x2) expect = np.array([[[1, 2], [3, 4], [1, 2], [3, 4], [5, 6]]]) assert (output.asnumpy() == expect).all()