# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bias_add_grad = G.BiasAddGrad() def construct(self, dout): return self.bias_add_grad(dout) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_bias_add_grad1(): dout = np.ones([2, 3]).astype(np.float32) bias_add_grad = Net() output = bias_add_grad(Tensor(dout)) expect_output = np.array([2., 2., 2.]).astype(np.float32) print(output.asnumpy()) assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_bias_add_grad2(): dout = np.ones([2, 3, 4, 4]).astype(np.float32) bias_add_grad = Net() output = bias_add_grad(Tensor(dout)) expect_output = np.array([32., 32., 32.]).astype(np.float32) print(output.asnumpy()) assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit"