# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_hypermap """ import numpy as np from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import Primitive from mindspore.ops import composite as C from mindspore.ops import functional as F from mindspore.ops import operations as P from ...ut_filter import non_graph_engine # pylint: disable=W0613 # W0613: unused-argument tensor_add = P.TensorAdd() scala_add = Primitive('scalar_add') add = C.MultitypeFuncGraph('add') @add.register("Number", "Number") def add_scala(x, y): return scala_add(x, y) @add.register("Tensor", "Tensor") def add_tensor(x, y): return tensor_add(x, y) hyper_add = C.HyperMap(add) @ms_function def mainf(x, y): return hyper_add(x, y) @non_graph_engine def test_hypermap_tensor(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) print("test_hypermap_tensor:", mainf(tensor1, tensor2)) def test_hypermap_scalar(): print("test_hypermap_scalar", mainf(1, 2)) def test_hypermap_tuple(): print("test_hypermap_tuple", mainf((1, 1), (2, 2))) @non_graph_engine def test_hypermap_tuple_tensor(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) print("test_hypermap_tuple_tensor", mainf((tensor1, tensor1), (tensor2, tensor2))) @non_graph_engine def test_hypermap_tuple_mix(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) print("test_hypermap_tuple_mix", mainf((tensor1, 1), (tensor2, 2))) hyper_map = C.HyperMap() @ms_function def main_noleaf(x, y): return hyper_map(add, x, y) def test_hypermap_noleaf_scalar(): main_noleaf(1, 2) @non_graph_engine def test_hypermap_noleaf_tensor(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) main_noleaf(tensor1, tensor2) def test_hypermap_noleaf_tuple(): main_noleaf((1, 1), (2, 2)) @non_graph_engine def test_hypermap_noleaf_tuple_tensor(): tensor1 = Tensor(np.array([[1.1, 2.1], [2.1, 3.1]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.2], [2.2, 3.2]]).astype('float32')) tensor3 = Tensor(np.array([[2.2], [3.2]]).astype('float32')) tensor4 = Tensor(np.array([[2.2], [3.2]]).astype('float32')) main_noleaf((tensor1, tensor3), (tensor2, tensor4)) def test_hypermap_noleaf_tuple_mix(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) main_noleaf((tensor1, 1), (tensor2, 2)) def add3_scalar(x, y, z): return scala_add(scala_add(x, y), z) @ms_function def main_add3_easy(x, y): add2 = F.partial(add3_scalar, 1) return add2(x, y) def test_hypermap_add3_easy(): main_add3_easy(1, 2) add3 = C.MultitypeFuncGraph('add') partial = P.Partial() @add3.register("Number", "Number", "Number") def add3_scala(x, y, z): return scala_add(scala_add(x, y), z) @add3.register("Number", "Tensor", "Tensor") def add3_tensor(x, y, z): return tensor_add(y, z) @ms_function def main_add3_scala(x, y): add2 = partial(add3_scala, 1) return hyper_map(add2, x, y) @ms_function def main_add3(x, y): add2 = partial(add3, 1) return hyper_map(add2, x, y) @non_graph_engine def test_hypermap_add3_tensor(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) main_add3(tensor1, tensor2) def test_hypermap_add3_tuple(): tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) main_add3((tensor1, 1), (tensor2, 1))