# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Transformer evaluation script.""" import os import numpy as np import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset.engine as de import mindspore.dataset.transforms.c_transforms as deC from mindspore import context from src.transformer_model import TransformerModel from src.eval_config import cfg, transformer_net_cfg def load_test_data(batch_size=1, data_file=None): """ Load test dataset """ ds = de.MindDataset(data_file, columns_list=["source_eos_ids", "source_eos_mask", "target_sos_ids", "target_sos_mask", "target_eos_ids", "target_eos_mask"], shuffle=False) type_cast_op = deC.TypeCast(mstype.int32) ds = ds.map(input_columns="source_eos_ids", operations=type_cast_op) ds = ds.map(input_columns="source_eos_mask", operations=type_cast_op) ds = ds.map(input_columns="target_sos_ids", operations=type_cast_op) ds = ds.map(input_columns="target_sos_mask", operations=type_cast_op) ds = ds.map(input_columns="target_eos_ids", operations=type_cast_op) ds = ds.map(input_columns="target_eos_mask", operations=type_cast_op) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) ds.channel_name = 'transformer' return ds class TransformerInferCell(nn.Cell): """ Encapsulation class of transformer network infer. """ def __init__(self, network): super(TransformerInferCell, self).__init__(auto_prefix=False) self.network = network def construct(self, source_ids, source_mask): predicted_ids = self.network(source_ids, source_mask) return predicted_ids def load_weights(model_path): """ Load checkpoint as parameter dict, support both npz file and mindspore checkpoint file. """ if model_path.endswith(".npz"): ms_ckpt = np.load(model_path) is_npz = True else: ms_ckpt = load_checkpoint(model_path) is_npz = False weights = {} for msname in ms_ckpt: infer_name = msname if "tfm_decoder" in msname: infer_name = "tfm_decoder.decoder." + infer_name if is_npz: weights[infer_name] = ms_ckpt[msname] else: weights[infer_name] = ms_ckpt[msname].data.asnumpy() weights["tfm_decoder.decoder.tfm_embedding_lookup.embedding_table"] = \ weights["tfm_embedding_lookup.embedding_table"] parameter_dict = {} for name in weights: parameter_dict[name] = Parameter(Tensor(weights[name]), name=name) return parameter_dict def run_transformer_eval(): """ Transformer evaluation. """ device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False, device_id=device_id) dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=cfg.data_file) tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False) parameter_dict = load_weights(cfg.model_file) load_param_into_net(tfm_model, parameter_dict) tfm_infer = TransformerInferCell(tfm_model) model = Model(tfm_infer) predictions = [] source_sents = [] target_sents = [] for batch in dataset.create_dict_iterator(): source_sents.append(batch["source_eos_ids"]) target_sents.append(batch["target_eos_ids"]) source_ids = Tensor(batch["source_eos_ids"], mstype.int32) source_mask = Tensor(batch["source_eos_mask"], mstype.int32) predicted_ids = model.predict(source_ids, source_mask) predictions.append(predicted_ids.asnumpy()) # decode and write to file f = open(cfg.output_file, 'w') for batch_out in predictions: for i in range(transformer_net_cfg.batch_size): if batch_out.ndim == 3: batch_out = batch_out[:, 0] token_ids = [str(x) for x in batch_out[i].tolist()] f.write(" ".join(token_ids) + "\n") f.close() if __name__ == "__main__": run_transformer_eval()