# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into mindir model################# python export.py """ import argparse import os import numpy as np from mindspore import Tensor, context from mindspore import export, load_checkpoint, load_param_into_net from src.config import lstm_cfg, lstm_cfg_ascend from src.lstm import SentimentNet if __name__ == '__main__': parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter') parser.add_argument('--preprocess_path', type=str, default='./preprocess', help='path where the pre-process data is stored.') parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--file_name", type=str, default="lstm", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format') parser.add_argument('--device_target', type=str, default="Ascend", choices=['GPU', 'CPU', 'Ascend'], help='the target device to run, support "GPU", "CPU". Default: "Ascend".') args = parser.parse_args() context.set_context( mode=context.GRAPH_MODE, save_graphs=False, device_target=args.device_target, device_id=args.device_id) if args.device_target == 'Ascend': cfg = lstm_cfg_ascend else: cfg = lstm_cfg embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32) if args.device_target == 'Ascend': pad_num = int(np.ceil(cfg.embed_size / 16) * 16 - cfg.embed_size) if pad_num > 0: embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant') cfg.embed_size = int(np.ceil(cfg.embed_size / 16) * 16) network = SentimentNet(vocab_size=embedding_table.shape[0], embed_size=cfg.embed_size, num_hiddens=cfg.num_hiddens, num_layers=cfg.num_layers, bidirectional=cfg.bidirectional, num_classes=cfg.num_classes, weight=Tensor(embedding_table), batch_size=cfg.batch_size) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(network, param_dict) input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[cfg.batch_size, 500]).astype(np.int32)) export(network, input_arr, file_name=args.file_name, file_format=args.file_format)