# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test nn.Dense """ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _executor from ..ut_filter import non_graph_engine def test_dense_none(): with pytest.raises(TypeError): nn.Dense(3, 2, None, None) @non_graph_engine def test_dense_str_activation(): dense = nn.Dense(1, 1, activation='relu') assert isinstance(dense.activation, nn.ReLU) input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32)) dense(input_data) def test_dense_weight_error(): dim_error = Tensor(np.array([[[0.1], [0.3], [0.6]], [[0.4], [0.5], [0.2]]])) with pytest.raises(ValueError): nn.Dense(3, 2, dim_error) shape_error = Tensor(np.array([[0.1, 0.3, 0.6], [0.4, 0.5, 0.2]])) with pytest.raises(ValueError): nn.Dense(2, 2, shape_error) with pytest.raises(ValueError): nn.Dense(3, 3, shape_error) def test_dense_bias_error(): dim_error = Tensor(np.array([[0.5, 0.3]])) with pytest.raises(ValueError): nn.Dense(3, 2, bias_init=dim_error) shape_error = Tensor(np.array([0.5, 0.3, 0.4])) with pytest.raises(ValueError): nn.Dense(3, 2, bias_init=shape_error) def test_dense_channels_error(): with pytest.raises(ValueError): nn.Dense(3, 0) with pytest.raises(ValueError): nn.Dense(-1, 2) class Net(nn.Cell): """ Net definition """ def __init__(self, input_channels, output_channels, weight='normal', bias='zeros', has_bias=True, activation=None): super(Net, self).__init__() self.dense = nn.Dense(input_channels, output_channels, weight, bias, has_bias, activation=activation) def construct(self, input_x): return self.dense(input_x) def test_compile(): """ test_compile """ # has bias weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32)) bias = Tensor(np.random.randint(0, 255, [8]).astype(np.float32)) net = Net(64, 8, weight=weight, bias=bias) input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32)) _executor.compile(net, input_data) # training net_train = Net(64, 8, weight=weight, bias=bias) net_train.set_train() _executor.compile(net_train, input_data) def test_compile_2(): """ test_compile_2 """ # no bias weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32)) net = Net(64, 8, weight=weight, has_bias=False) input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32)) _executor.compile(net, input_data) # training net_train = Net(64, 8, weight=weight, has_bias=False) net_train.set_train() _executor.compile(net_train, input_data) def test_compile_3(): """ test_compile_3 """ # test for Graph mode # has bias context.set_context(mode=context.GRAPH_MODE) net = Net(128, 10) input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32)) _executor.compile(net, input_data) # training net_train = Net(128, 10) net_train.set_train() _executor.compile(net_train, input_data) def test_compile_4(): """ test_compile_4 """ # test for Graph mode # no bias context.set_context(mode=context.GRAPH_MODE) net = Net(128, 10, has_bias=False) input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32)) _executor.compile(net, input_data) # training net_train = Net(128, 10, has_bias=False) net_train.set_train() _executor.compile(net_train, input_data)