# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P x0 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis0 = 3 x1 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis1 = 3 x2 = np.random.rand(2, 3, 1, 4).astype(np.float32) axis2 = 2 x3 = np.random.rand(2, 3, 1, 4).astype(np.float32) axis3 = 2 x4 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis4 = 1 x5 = np.random.rand(2, 3).astype(np.float32) axis5 = 1 x6 = np.random.rand(1, 1, 1, 1).astype(np.float32) axis6 = 0 context.set_context(device_target='GPU') class CumSum(nn.Cell): def __init__(self): super(CumSum, self).__init__() self.x0 = Tensor(x0) self.axis0 = axis0 self.x1 = Tensor(x1) self.axis1 = axis1 self.x2 = Tensor(x2) self.axis2 = axis2 self.x3 = Tensor(x3) self.axis3 = axis3 self.x4 = Tensor(x4) self.axis4 = axis4 self.x5 = Tensor(x5) self.axis5 = axis5 self.x6 = Tensor(x6) self.axis6 = axis6 @ms_function def construct(self): return (P.CumSum()(self.x0, self.axis0), P.CumSum()(self.x1, self.axis1), P.CumSum()(self.x2, self.axis2), P.CumSum()(self.x3, self.axis3), P.CumSum()(self.x4, self.axis4), P.CumSum()(self.x5, self.axis5), P.CumSum()(self.x6, self.axis6)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_CumSum(): cumsum = CumSum() output = cumsum() expect0 = np.cumsum(x0, axis=axis0) diff0 = abs(output[0].asnumpy() - expect0) error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output[0].shape == expect0.shape expect1 = np.cumsum(x1, axis=axis1) diff1 = abs(output[1].asnumpy() - expect1) error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output[1].shape == expect1.shape expect2 = np.cumsum(x2, axis=axis2) diff2 = abs(output[2].asnumpy() - expect2) error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output[2].shape == expect2.shape expect3 = np.cumsum(x3, axis=axis3) diff3 = abs(output[3].asnumpy() - expect3) error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output[3].shape == expect3.shape expect4 = np.cumsum(x4, axis=axis4) diff4 = abs(output[4].asnumpy() - expect4) error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output[4].shape == expect4.shape expect5 = np.cumsum(x5, axis=axis5) diff5 = abs(output[5].asnumpy() - expect5) error5 = np.ones(shape=expect5.shape) * 1.0e-5 assert np.all(diff5 < error5) assert output[5].shape == expect5.shape expect6 = np.cumsum(x6, axis=axis6) diff6 = abs(output[6].asnumpy() - expect6) error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output[6].shape == expect6.shape