# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test cases for scalar affine""" import pytest import mindspore.nn as nn import mindspore.nn.probability.bijector as msb from mindspore import Tensor from mindspore import dtype def test_init(): """ Test initializations. """ b = msb.Softplus() assert isinstance(b, msb.Bijector) b = msb.Softplus(1.0) assert isinstance(b, msb.Bijector) def test_type(): with pytest.raises(TypeError): msb.Softplus(sharpness='sharpness') with pytest.raises(TypeError): msb.Softplus(name=0.1) class ForwardBackward(nn.Cell): """ Test class: forward and backward pass. """ def __init__(self): super(ForwardBackward, self).__init__() self.b1 = msb.Softplus(2.0) self.b2 = msb.Softplus() def construct(self, x_): ans1 = self.b1.inverse(self.b1.forward(x_)) ans2 = self.b2.inverse(self.b2.forward(x_)) return ans1 + ans2 def test_forward_and_backward_pass(): """ Test forward and backward pass of Softplus bijector. """ net = ForwardBackward() x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) ans = net(x) assert isinstance(ans, Tensor) class ForwardJacobian(nn.Cell): """ Test class: Forward log Jacobian. """ def __init__(self): super(ForwardJacobian, self).__init__() self.b1 = msb.Softplus(2.0) self.b2 = msb.Softplus() def construct(self, x_): ans1 = self.b1.forward_log_jacobian(x_) ans2 = self.b2.forward_log_jacobian(x_) return ans1 + ans2 def test_forward_jacobian(): """ Test forward log jacobian of Softplus bijector. """ net = ForwardJacobian() x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) ans = net(x) assert isinstance(ans, Tensor) class BackwardJacobian(nn.Cell): """ Test class: Backward log Jacobian. """ def __init__(self): super(BackwardJacobian, self).__init__() self.b1 = msb.Softplus(2.0) self.b2 = msb.Softplus() def construct(self, x_): ans1 = self.b1.inverse_log_jacobian(x_) ans2 = self.b2.inverse_log_jacobian(x_) return ans1 + ans2 def test_backward_jacobian(): """ Test backward log jacobian of Softplus bijector. """ net = BackwardJacobian() x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) ans = net(x) assert isinstance(ans, Tensor) class Net(nn.Cell): """ Test class: function calls going through construct. """ def __init__(self): super(Net, self).__init__() self.b1 = msb.Softplus(1.0) self.b2 = msb.Softplus() def construct(self, x_): ans1 = self.b1('inverse', self.b1('forward', x_)) ans2 = self.b2('inverse', self.b2('forward', x_)) ans3 = self.b1('forward_log_jacobian', x_) ans4 = self.b2('forward_log_jacobian', x_) ans5 = self.b1('inverse_log_jacobian', x_) ans6 = self.b2('inverse_log_jacobian', x_) return ans1 - ans2 + ans3 -ans4 + ans5 - ans6 def test_old_api(): """ Test old api which goes through construct. """ net = Net() x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) ans = net(x) assert isinstance(ans, Tensor)