# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export ckpt to model""" import argparse import numpy as np from mindspore import context, Tensor from mindspore.train.serialization import export, load_checkpoint from src.deepfm import ModelBuilder from src.config import DataConfig, ModelConfig, TrainConfig parser = argparse.ArgumentParser(description="deepfm export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=16000, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="deepfm", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == "__main__": data_config = DataConfig() model_builder = ModelBuilder(ModelConfig, TrainConfig) _, network = model_builder.get_train_eval_net() network.set_train(False) load_checkpoint(args.ckpt_file, net=network) batch_ids = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.int32)) batch_wts = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.float32)) labels = Tensor(np.zeros([data_config.batch_size, 1]).astype(np.float32)) input_data = [batch_ids, batch_wts, labels] export(network, *input_data, file_name=args.file_name, file_format=args.file_format)