# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetACosGrad(nn.Cell): def __init__(self): super(NetACosGrad, self).__init__() self.acosGrad = G.ACosGrad() def construct(self, x, dy): return self.acosGrad(x, dy) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_acos_grad(): x = np.array([-0.5, 0, 0.5]).astype('float32') dy = np.array([1, 0, -1]).astype('float32') acos_grad = NetACosGrad() output = acos_grad(Tensor(x), Tensor(dy)) print(output) expect = -dy / np.sqrt(1 - x * x) assert np.allclose(output.asnumpy(), expect)