# Run distribute pretrain ## description The number of Ascend accelerators can be automatically allocated based on the device_num set in hccl config file, You don not need to specify that. ## how to use For example, if we want to generate the launch command of the distributed training of Bert model on Ascend accelerators, we can run the following command in `/bert/` dir: ``` python ./scripts/ascend_distributed_launcher/get_distribute_pretrain_cmd.py --run_script_dir ./run_pretrain.py --hyper_parameter_config_dir ./scripts/ascend_distributed_launcher/hyper_parameter_config.ini --data_dir /path/dataset/ --hccl_config_dir model_zoo/utils/hccl_tools/hccl_2p_56_x.x.x.x.json ``` output: ``` hccl_config_dir: model_zoo/utils/hccl_tools/hccl_2p_56_x.x.x.x.json the number of logical core: 192 avg_core_per_rank: 96 rank_size: 2 start training for rank 0, device 5: rank_id: 0 device_id: 5 core nums: 0-95 epoch_size: 8 data_dir: /data/small_512/ schema_dir: log file dir: ./LOG5/log.txt start training for rank 1, device 6: rank_id: 1 device_id: 6 core nums: 96-191 epoch_size: 8 data_dir: /data/small_512/ schema_dir: log file dir: ./LOG6/log.txt ``` ## Note 1. Note that `hccl_2p_56_x.x.x.x.json` can use [hccl_tools.py](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools) to generate. 2. For hyper parameter, please note that you should customize the scripts `hyper_parameter_config.ini`. Please note that these two hyper parameters are not allowed to be configured here: - device_id - device_num - data_dir 3. For Other Model, please note that you should customize the option `run_script` and Corresponding `hyper_parameter_config.ini`.