# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Generate News Crawl corpus dataset.""" import argparse from src.utils import Dictionary from src.utils.preprocess import create_pre_training_dataset parser = argparse.ArgumentParser(description='Create News Crawl Pre-Training Dataset.') parser.add_argument("--src_folder", type=str, default="", required=True, help="Raw corpus folder.") parser.add_argument("--existed_vocab", type=str, default="", required=True, help="Existed vocab path.") parser.add_argument("--mask_ratio", type=float, default=0.4, required=True, help="Mask ratio.") parser.add_argument("--output_folder", type=str, default="", required=True, help="Dataset output path.") parser.add_argument("--max_len", type=int, default=32, required=False, help="Max length of sentences.") parser.add_argument("--suffix", type=str, default="", required=False, help="Add suffix to output file.") parser.add_argument("--processes", type=int, default=2, required=False, help="Size of processes pool.") if __name__ == '__main__': args, _ = parser.parse_known_args() if not (args.src_folder and args.output_folder): raise ValueError("Please enter required params.") if not args.existed_vocab: raise ValueError("`--existed_vocab` is required.") vocab = Dictionary.load_from_persisted_dict(args.existed_vocab) create_pre_training_dataset( folder_path=args.src_folder, output_folder_path=args.output_folder, vocabulary=vocab, prefix="news.20", suffix=args.suffix, mask_ratio=args.mask_ratio, min_sen_len=10, max_sen_len=args.max_len, dataset_type="tfrecord", cores=args.processes ) print(f" | Vocabulary size: {vocab.size}.")