# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """eval_criteo.""" import os import sys import time import argparse from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.autodis import ModelBuilder, AUCMetric from src.config import DataConfig, ModelConfig, TrainConfig from src.dataset import create_dataset, DataType sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) parser = argparse.ArgumentParser(description='CTR Prediction') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default="Ascend", choices=["Ascend"], help='Default: Ascend') args_opt, _ = parser.parse_known_args() device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id) def add_write(file_path, print_str): with open(file_path, 'a+', encoding='utf-8') as file_out: file_out.write(print_str + '\n') if __name__ == '__main__': data_config = DataConfig() model_config = ModelConfig() train_config = TrainConfig() ds_eval = create_dataset(args_opt.dataset_path, train_mode=False, epochs=1, batch_size=train_config.batch_size, data_type=DataType(data_config.data_format)) model_builder = ModelBuilder(ModelConfig, TrainConfig) train_net, eval_net = model_builder.get_train_eval_net() train_net.set_train() eval_net.set_train(False) auc_metric = AUCMetric() model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric}) param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(eval_net, param_dict) start = time.time() res = model.eval(ds_eval) eval_time = time.time() - start time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) out_str = f'{time_str} AUC: {list(res.values())[0]}, eval time: {eval_time}s.' print(out_str) add_write('./auc.log', str(out_str))