# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_dropout """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore import dtype as mstype from mindspore.ops.operations import _grad_ops as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class Net(nn.Cell): def __init__(self, keep_prob=0.5): super(Net, self).__init__() self.dropout_grad = P.DropoutGrad(keep_prob) def construct(self, output, mask): return self.dropout_grad(output, mask) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dropout_grad_001(): in_tensor = Tensor(np.array([[[3., 1., 2.]], \ [[4., 1., 4.]]]), mstype.float32) in_mask = Tensor(np.array([[[1., 0, 0]], [[1., 1., 0]]]), mstype.float32) dropout_grad = Net() output = dropout_grad(in_tensor, in_mask) print("output:\n", output) expect = np.array([[[6., 0., 0.]], [[8., 2., 0.]]]).astype(np.float32) error = np.ones(shape=[2, 3]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dropout_grad_002(): in_tensor = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]), mstype.float16) in_mask = Tensor(np.array([[[1., 0, 0]], [[1., 1., 0]]]), mstype.float16) dropout_grad = Net() output = dropout_grad(in_tensor, in_mask) print("output:\n", output) expect = np.array([[[6., 0., 0.]], [[8., 2., 0.]]]).astype(np.float16) error = np.ones(shape=[2, 3]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dropout_grad_003(): in_tensor = Tensor(np.array([[[3., 1., 2.], [3., 1., 2.]], \ [[4., 1., 4.], [4., 1., 4.]]]), mstype.float16) in_mask = Tensor(np.array([[[1., 0, 0], [1., 0, 0]], \ [[1., 1., 0], [1., 1., 0]]]), mstype.float16) dropout_grad = Net() output = dropout_grad(in_tensor, in_mask) print("output:\n", output) expect = np.array([[[6., 0., 0.], [6., 0., 0.]], \ [[8., 2., 0.], [8., 2., 0.]]]).astype(np.float16) error = np.ones(shape=[2, 2, 3]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dropout_grad_004(): in_tensor = Tensor(np.array([[6.]]), mstype.float32) in_mask = Tensor(np.array([[1.]]), mstype.float32) dropout_grad = Net(1.) output = dropout_grad(in_tensor, in_mask) print("output:\n", output) expect = np.array([[6.]]).astype(np.float32) error = np.ones(shape=[1]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dropout_grad_005(): in_tensor = Tensor(np.array([[]]), mstype.float32) in_mask = Tensor(np.array([[]]), mstype.float32) dropout_grad = Net(1.) output = dropout_grad(in_tensor, in_mask) print("output:\n", output) expect = np.array([[]]).astype(np.float32) error = np.ones(shape=[]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_dropout_grad_006(): in_tensor = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]), mstype.float16) in_mask = Tensor(np.array([[[1., 0, 0]], [[0., 0., 1.]]]), mstype.float16) dropout_grad = Net(0.3333333333) output = dropout_grad(in_tensor, in_mask) print("output:\n", output) expect = np.array([[[9., 0., 0.]], [[0., 0., 12.]]]).astype(np.float16) error = np.ones(shape=[2, 3]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(np.abs(diff) < error)