# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Slice(nn.Cell): def __init__(self): super(Slice, self).__init__() self.slice = P.Slice() def construct(self, x): return self.slice(x, (0, 1, 0), (2, 1, 3)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice(): x = Tensor( np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]), mstype.float32) expect = [[[2., -2., 2.]], [[4., -4., 4.]]] slice_op = Slice() output = slice_op(x) assert (output.asnumpy() == expect).all() class Slice2(nn.Cell): def __init__(self): super(Slice2, self).__init__() self.slice = P.Slice() def construct(self, x): return self.slice(x, (1, 0, 0), (1, 2, 3)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice2(): x = Tensor(np.arange(3 * 2 * 3).reshape(3, 2, 3), mstype.float32) expect = [[[6., 7., 8.], [9., 10., 11.]]] slice_op = Slice2() output = slice_op(x) assert (output.asnumpy() == expect).all() class Slice3(nn.Cell): def __init__(self): super(Slice3, self).__init__() self.relu = nn.ReLU() def construct(self, x): return (x[..., -1], x[..., 2:1:-1], x[1:3:1, 0, ...], x[-1, 0, ...]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice3(): inputx = np.random.rand(4, 4, 4, 4).astype(np.float32) x = Tensor(inputx) slice_op = Slice3() output = slice_op(x) assert (output[0].asnumpy() == inputx[..., -1]).all() assert (output[1].asnumpy() == inputx[..., 2:1:-1]).all() assert (output[2].asnumpy() == inputx[1:3:1, 0, ...]).all() assert (output[3].asnumpy() == inputx[-1, 0, ...]).all() class Slice4(nn.Cell): def __init__(self): super(Slice4, self).__init__() self.relu = nn.ReLU() def construct(self, x): return x[:10:1, :, 2:3:1] @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice4(): inputx = np.random.rand(4, 4, 4).astype(np.float32) x = Tensor(inputx) slice_op = Slice4() output = slice_op(x) assert (output.asnumpy() == inputx[:10:1, :, 2:3:1]).all() class Slice5(nn.Cell): def __init__(self, begin, size): super(Slice5, self).__init__() self.relu = nn.ReLU() self.slice = P.Slice() self.begin = begin self.size = size def construct(self, x): return self.slice(x, self.begin, self.size) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice5(): inputx = np.arange(3 * 5 * 4).reshape(3, 5, 4).astype(np.float32) x = Tensor(inputx) begin = (0, 1, 0) size = (3, 4, 4) slice_op = Slice5(begin, size) output = slice_op(x) assert (output.asnumpy() == inputx[0:3:1, 1:5:1, 0:4:1]).all() class Slice6(nn.Cell): def __init__(self): super(Slice6, self).__init__() self.relu = nn.ReLU() def construct(self, x): return (x[-10:], x[-5:10:2, :, :], x[-10:10:1, :, -10:10:1]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice6(): inputx = np.random.rand(4, 4, 4).astype(np.float32) x = Tensor(inputx) slice_op = Slice6() output = slice_op(x) assert (output[0].asnumpy() == inputx[-10:]).all() assert (output[1].asnumpy() == inputx[-5:10:2, :, :]).all() assert (output[2].asnumpy() == inputx[-10:10:1, :, -10:10:1]).all() if __name__ == '__main__': test_slice() test_slice2() test_slice3() test_slice4() test_slice5() test_slice6()