# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.ops.composite as C from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.add = P.AddN() def construct(self, x, y): return self.add((x, y)) def test_net(): x = np.random.randn(1, 3, 3, 4).astype(np.float32) y = np.random.randn(1, 3, 3, 4).astype(np.float32) add = Net() output = add(Tensor(x), Tensor(y)) print(x) print(y) print(output.asnumpy()) x = 1.0 y = 2.0 expect = 3.0 add = Net() output = add(x, y) assert output == expect def test_grad_addn_with_list(): grad_op = C.GradOperation(get_all=True) class AddN(nn.Cell): def __init__(self): super().__init__() self.add_n = P.AddN() def construct(self, a, b): return self.add_n([a, b]) inp = Tensor(np.ones([128, 96]).astype(np.float32)) grad_op(AddN())(inp, inp)