# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops.operations import _grad_ops as G context.set_context(device_target='GPU') class SliceGrad(nn.Cell): def __init__(self): super(SliceGrad, self).__init__() self.slicegrad = G.SliceGrad() @ms_function def construct(self, dy, x): return self.slicegrad(dy, x, (0, 1, 0), (2, 1, 3)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_slice(): x = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]).astype(np.float32)) dy = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]).astype(np.float32)) slicegrad = SliceGrad() output = slicegrad(dy, x) expect = [[[0., 0., 0.], [3., 1., 2.]], [[0., 0., 0.], [4., 1., 4.]], [[0., 0., 0.], [0., 0., 0.]]] print(output) assert (output.asnumpy() == expect).all()