# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.common.api import ms_function from mindspore.ops.operations import _grad_ops as G from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class SliceGrad(nn.Cell): def __init__(self): super(SliceGrad, self).__init__() self.slicegrad = G.SliceGrad() @ms_function def construct(self, dy, x): return self.slicegrad(dy, x, (0, 1, 0), (2, 1, 3)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice_grad(): x = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]), mstype.float32) dy = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]), mstype.float32) slicegrad = SliceGrad() output = slicegrad(dy, x) expect = [[[0., 0., 0.], [3., 1., 2.]], [[0., 0., 0.], [4., 1., 4.]], [[0., 0., 0.], [0., 0., 0.]]] print("output:\n", output) assert (output.asnumpy() == expect).all() class SliceGrad2(nn.Cell): def __init__(self): super(SliceGrad2, self).__init__() self.slicegrad = G.SliceGrad() def construct(self, dy, x): return self.slicegrad(dy, x, (0, 1, 0), (2, 2, 2)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice_grad2(): dy = Tensor(np.array([[[2., 3.], [4., 5.]], [[8., 9.], [10., 11.]]]), mstype.float32) x = Tensor(np.arange(2 * 3 * 2).reshape(2, 3, 2), mstype.float32) grad = SliceGrad2() output = grad(dy, x) print("output:\n", output) expect = [[[0., 0.], [2., 3.], [4., 5.]], [[0., 0.], [8., 9.], [10., 11.]]] assert (output.asnumpy() == expect).all() class StridedSliceGrad(nn.Cell): def __init__(self, x, begin, end, stride): super(StridedSliceGrad, self).__init__() self.shape_op = P.Shape() self.shapex = self.shape_op(x) self.begin = begin self.end = end self.stride = stride self.stride_slice = G.StridedSliceGrad() def construct(self, dy): return self.stride_slice(dy, self.shapex, self.begin, self.end, self.stride) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_strided_slice_grad_bool_type(): x = Tensor([[[False, False, True], [False, True, False]], [[False, True, False], [True, False, False]], [[False, True, True], [True, False, True]]], mstype.bool_) dy = Tensor([False, True, False], mstype.bool_) begin = (1, 0, 0) end = (2, 1, 3) stride = (1, 1, 1) slice_op = StridedSliceGrad(x, begin, end, stride) output = slice_op(dy) expected_output = np.array([[[False, False, False], [False, False, False]], [[False, True, False], [False, False, False]], [[False, False, False], [False, False, False]]]) assert (output.asnumpy() == expected_output).all() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_strided_slice_grad_float32_type(): x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]], mstype.float32) dy = Tensor([3, 3, 3], mstype.float32) begin = (1, 0, 0) end = (2, 1, 3) stride = (1, 1, 1) slice_op = StridedSliceGrad(x, begin, end, stride) output = slice_op(dy) expected_output = np.array([[[0, 0, 0], [0, 0, 0]], [[3, 3, 3], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]]) assert (output.asnumpy() == expected_output).all() if __name__ == '__main__': test_slice_grad() test_slice_grad2() test_strided_slice_grad_bool_type() test_strided_slice_grad_float32_type()