# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.common.api import ms_function from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class StridedSliceGrad(nn.Cell): def __init__(self): super(StridedSliceGrad, self).__init__() self.ssg = G.StridedSliceGrad() self.shape = P.Shape() @ms_function def construct(self, dy, x): return self.ssg(dy, self.shape(x), (2, 0, 0), (3, 2, 3), (1, 1, 1)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice(): x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32)) dy = Tensor(np.array([[[5., 1., 5.], [6., 1., 8.]]]).astype(np.float32)) ssg = StridedSliceGrad() output = ssg(dy, x) expect = [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[5, 1, 5], [6, 1, 8]]] assert (output.asnumpy() == expect).all() class StridedSliceGrad2(nn.Cell): def __init__(self): super(StridedSliceGrad2, self).__init__() self.ssg = G.StridedSliceGrad() self.shape = P.Shape() @ms_function def construct(self, dy, x): return self.ssg(dy, self.shape(x), (0, 0, 0), (1, 4, 2), (1, 1, 1)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_slice2(): x = Tensor(np.arange(2 * 4 * 2).reshape(2, 4, 2), mstype.float32) dy = Tensor(np.arange(4 * 2).reshape(4, 2), mstype.float32) ssg = StridedSliceGrad2() output = ssg(dy, x) expect = [[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]] assert (output.asnumpy() == expect).all() if __name__ == '__main__': test_slice() test_slice2()