# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Weight average.""" import os import argparse import numpy as np from mindspore.train.serialization import load_checkpoint parser = argparse.ArgumentParser(description='transformer') parser.add_argument("--input_files", type=str, default=None, required=False, help="Multi ckpt files path.") parser.add_argument("--input_folder", type=str, default=None, required=False, help="Ckpt files folder.") parser.add_argument("--output_file", type=str, default=None, required=True, help="Output model file path.") def average_me_models(ckpt_list): """ Average multi ckpt params. Args: ckpt_list (list): Ckpt paths. Returns: dict, params dict. """ avg_model = {} # load all checkpoint for ckpt in ckpt_list: if not ckpt.endswith(".ckpt"): continue if not os.path.exists(ckpt): raise FileNotFoundError(f"Checkpoint file is not existed.") print(f" | Loading ckpt from {ckpt}.") ms_ckpt = load_checkpoint(ckpt) for param_name in ms_ckpt: if param_name not in avg_model: avg_model[param_name] = [] avg_model[param_name].append(ms_ckpt[param_name].data.asnumpy()) for name in avg_model: avg_model[name] = sum(avg_model[name]) / float(len(ckpt_list)) return avg_model def main(): """Entry point.""" args, _ = parser.parse_known_args() if not args.input_files and not args.input_folder: raise ValueError("`--input_files` or `--input_folder` must be provided one as least.") ckpt_list = [] if args.input_files: ckpt_list.extend(args.input_files.split(",")) if args.input_folder and os.path.exists(args.input_folder) and os.path.isdir(args.input_folder): for file in os.listdir(args.input_folder): ckpt_list.append(os.path.join(args.input_folder, file)) avg_weights = average_me_models(ckpt_list) np.savez(args.output_file, **avg_weights) if __name__ == '__main__': main()