# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetElu(nn.Cell): def __init__(self): super(NetElu, self).__init__() self.elu = P.Elu() def construct(self, x): return self.elu(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_elu_fp16(): x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float16)) expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float16) error = np.ones(shape=[2, 3]) * 1.0e-6 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") elu = NetElu() output = elu(x) diff = output.asnumpy() - expect assert np.all(diff < error) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") elu = NetElu() output = elu(x) diff = output.asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_elu_fp32(): x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float32)) expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float32) error = np.ones(shape=[2, 3]) * 1.0e-6 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") elu = NetElu() output = elu(x) diff = output.asnumpy() - expect assert np.all(diff < error) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") elu = NetElu() output = elu(x) diff = output.asnumpy() - expect assert np.all(diff < error)