# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context class NetEqualCount(nn.Cell): def __init__(self): super(NetEqualCount, self).__init__() self.equalcount = P.EqualCount() def construct(self, x, y): return self.equalcount(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_equalcount(): x = Tensor(np.array([1, 20, 5]).astype(np.int32)) y = Tensor(np.array([2, 20, 5]).astype(np.int32)) expect = np.array([2]).astype(np.int32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") equal_count = NetEqualCount() output = equal_count(x, y) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") equal_count = NetEqualCount() output = equal_count(x, y) assert (output.asnumpy() == expect).all()