# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing the random vertical flip op in DE """ import matplotlib.pyplot as plt import mindspore.dataset.transforms.vision.c_transforms as vision import numpy as np import mindspore.dataset as ds from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def v_flip(image): """ Apply the random_vertical """ # with the seed provided in this test case, it will always flip. # that's why we flip here too image = image[::-1, :, :] return image def visualize(image_de_random_vertical, image_pil_random_vertical, mse, image_original): """ visualizes the image using DE op and Numpy op """ plt.subplot(141) plt.imshow(image_original) plt.title("Original image") plt.subplot(142) plt.imshow(image_de_random_vertical) plt.title("DE random_vertical image") plt.subplot(143) plt.imshow(image_pil_random_vertical) plt.title("vertically flipped image") plt.subplot(144) plt.imshow(image_de_random_vertical - image_pil_random_vertical) plt.title("Difference image, mse : {}".format(mse)) plt.show() def test_random_vertical_op(): """ Test random_vertical """ logger.info("Test random_vertical") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() random_vertical_op = vision.RandomVerticalFlip() data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_vertical_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=decode_op) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): # with the seed value, we can only guarantee the first number generated if num_iter > 0: break image_v_flipped = item1["image"] image = item2["image"] image_v_flipped_2 = v_flip(image) diff = image_v_flipped - image_v_flipped_2 mse = np.sum(np.power(diff, 2)) logger.info("image_{}, mse: {}".format(num_iter + 1, mse)) # Uncomment below line if you want to visualize images # visualize(image_v_flipped, image_v_flipped_2, mse, image) num_iter += 1 if __name__ == "__main__": test_random_vertical_op()