# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss import mindspore as ms from mindspore.common.api import _executor from mindspore.ops import composite as C import mindspore.common.dtype as mstype class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b, sens): return C.grad_all_with_sens(self.network)(x, y, b, sens) class GradWrap2(nn.Cell): def __init__(self, network): super(GradWrap2, self).__init__() self.network = network def construct(self, x, y, b): loss = self.network(x, y, b) sens = P.Fill()(mstype.float32, P.Shape()(loss), 1.0) return C.grad_all_with_sens(self.network)(x, y, b, sens) class GradWrap3(nn.Cell): def __init__(self, network): super(GradWrap3, self).__init__() self.network = network def construct(self, x, y, bias): return C.grad_all(self.network)(x, y, bias) def compile(net, x, y, b): net.set_auto_parallel() _executor.compile(net, x, y, b) def test_no_grad(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((4, 2), (2, 1)) strategy2 = ((2, 4), (4, 1)) net = Net(strategy1, strategy2) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_grad_sens_parameter_type(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((4, 2), (2, 1)) strategy2 = ((2, 4), (4, 1)) net = GradWrap(Net(strategy1, strategy2)) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) sens = Tensor(np.ones([128, 64]), dtype=ms.float32) # net(x, y, b, sens) net.set_auto_parallel() _executor.compile(net, x, y, b, sens) def test_grad_sens_tensor_type(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((4, 2), (2, 1)) strategy2 = ((2, 4), (4, 1)) net = GradWrap2(Net(strategy1, strategy2)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_grad_sens_scalar_broadcast(): class Net(nn.Cell): def __init__(self, strategy0, strategy1): super().__init__() self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0) self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1) def construct(self, x, y, bias): out = self.fc_nobias(x, y) out = self.reduce_sum(out, (0, 1)) return out context.set_auto_parallel_context(device_num=16, global_rank=0) strategy0 = ((4, 1), (4, 1)) strategy1 = ((4, 1),) net = GradWrap3(Net(strategy0, strategy1)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 32]), dtype=ms.float32) bias = Tensor(np.ones([64]), dtype=ms.float32) compile(net, x, y, bias)