# Contents - [MobileNetV2 Description](#mobilenetv2-description) - [Model Architecture](#model-architecture) - [Dataset](#dataset) - [Features](#features) - [Mixed Precision](#mixed-precision(ascend)) - [Environment Requirements](#environment-requirements) - [Script Description](#script-description) - [Script and Sample Code](#script-and-sample-code) - [Training Process](#training-process) - [Evaluation Process](#eval-process) - [Model Export](#model-export) - [Model Description](#model-description) - [Performance](#performance) - [Training Performance](#training-performance) - [Evaluation Performance](#evaluation-performance) - [Description of Random Situation](#description-of-random-situation) - [ModelZoo Homepage](#modelzoo-homepage) # [MobileNetV2 Description](#contents) MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019. [Paper](https://arxiv.org/pdf/1905.02244) Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019. # [Model architecture](#contents) The overall network architecture of MobileNetV2 is show below: [Link](https://arxiv.org/pdf/1905.02244) # [Dataset](#contents) Dataset used: [imagenet](http://www.image-net.org/) - Dataset size: ~125G, 1.2W colorful images in 1000 classes - Train: 120G, 1.2W images - Test: 5G, 50000 images - Data format: RGB images. - Note: Data will be processed in src/dataset.py # [Features](#contents) ## [Mixed Precision(Ascend)](#contents) The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. # [Environment Requirements](#contents) - Hardware(Ascend/GPU/CPU) - Prepare hardware environment with Ascend, GPU or CPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) # [Script description](#contents) ## [Script and sample code](#contents) ```python ├── MobileNetV2 ├── README.md # descriptions about MobileNetV2 ├── scripts │ ├──run_train.sh # shell script for train, fine_tune or incremental learn with CPU, GPU or Ascend │ ├──run_eval.sh # shell script for evaluation with CPU, GPU or Ascend ├── src │ ├──args.py # parse args │ ├──config.py # parameter configuration │ ├──dataset.py # creating dataset │ ├──lr_generator.py # learning rate config │ ├──mobilenetV2.py # MobileNetV2 architecture │ ├──models.py # contain define_net and Loss, Monitor │ ├──utils.py # utils to load ckpt_file for fine tune or incremental learn ├── train.py # training script ├── eval.py # evaluation script ├── export.py # export mindir script ├── mindspore_hub_conf.py # mindspore hub interface ``` ## [Training process](#contents) ### Usage You can start training using python or shell scripts. The usage of shell scripts as follows: - Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER] [FILTER_HEAD] - GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER] [FILTER_HEAD] - CPU: sh run_trian.sh CPU [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER] [FILTER_HEAD] `CKPT_PATH` `FREEZE_LAYER` and `FILTER_HEAD` are optional, when set `CKPT_PATH`, `FREEZE_LAYER` must be set. `FREEZE_LAYER` should be in ["none", "backbone"], and if you set `FREEZE_LAYER`="backbone", the parameter in backbone will be freezed when training and the parameter in head will not be load from checkpoint. if `FILTER_HEAD`=True, the parameter in head will not be load from checkpoint. > RANK_TABLE_FILE is HCCL configuration file when running on Ascend. > The common restrictions on using the distributed service are as follows. For details, see the HCCL documentation. > > - In a single-node system, a cluster of 1, 2, 4, or 8 devices is supported. In a multi-node system, a cluster of 8 x N devices is supported. > - Each host has four devices numbered 0 to 3 and four devices numbered 4 to 7 deployed on two different networks. During training of 2 or 4 devices, the devices must be connected and clusters cannot be created across networks. ### Launch ```shell # training example python: Ascend: python train.py --platform Ascend --dataset_path [TRAIN_DATASET_PATH] GPU: python train.py --platform GPU --dataset_path [TRAIN_DATASET_PATH] CPU: python train.py --platform CPU --dataset_path [TRAIN_DATASET_PATH] shell: Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json [TRAIN_DATASET_PATH] GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 [TRAIN_DATASET_PATH] CPU: sh run_train.sh CPU [TRAIN_DATASET_PATH] # fine tune whole network example python: Ascend: python train.py --platform Ascend --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer none --filter_head True GPU: python train.py --platform GPU --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer none --filter_head True CPU: python train.py --platform CPU --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer none --filter_head True shell: Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json [TRAIN_DATASET_PATH] [CKPT_PATH] none True GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 [TRAIN_DATASET_PATH] [CKPT_PATH] none True CPU: sh run_train.sh CPU [TRAIN_DATASET_PATH] [CKPT_PATH] none True # fine tune full connected layers example python: Ascend: python --platform Ascend train.py --dataset_path [TRAIN_DATASET_PATH]--pretrain_ckpt [CKPT_PATH] --freeze_layer backbone GPU: python --platform GPU train.py --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer backbone CPU: python --platform CPU train.py --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer backbone shell: Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json [TRAIN_DATASET_PATH] [CKPT_PATH] backbone GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 [TRAIN_DATASET_PATH] [CKPT_PATH] backbone CPU: sh run_train.sh CPU [TRAIN_DATASET_PATH] [CKPT_PATH] backbone ``` ### Result Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train.log` like followings with the platform CPU and GPU, will be wrote to `./train/rank*/log*.log` with the platform Ascend . ```shell epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100] epoch time: 140522.500, per step time: 224.836, avg loss: 5.258 epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200] epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 ``` ## [Evaluation process](#contents) ### Usage You can start training using python or shell scripts.If the train method is train or fine tune, should not input the `[CHECKPOINT_PATH]` The usage of shell scripts as follows: - Ascend: sh run_eval.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH] - GPU: sh run_eval.sh GPU [DATASET_PATH] [CHECKPOINT_PATH] - CPU: sh run_eval.sh CPU [DATASET_PATH] [BACKBONE_CKPT_PATH] ### Launch ```shell # eval example python: Ascend: python eval.py --platform Ascend --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt ./ckpt_0/mobilenetv2_15.ckpt GPU: python eval.py --platform GPU --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt ./ckpt_0/mobilenetv2_15.ckpt CPU: python eval.py --platform CPU --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt ./ckpt_0/mobilenetv2_15.ckpt shell: Ascend: sh run_eval.sh Ascend [VAL_DATASET_PATH] ./checkpoint/mobilenetv2_head_15.ckpt GPU: sh run_eval.sh GPU [VAL_DATASET_PATH] ./checkpoint/mobilenetv2_head_15.ckpt CPU: sh run_eval.sh CPU [VAL_DATASET_PATH] ./checkpoint/mobilenetv2_head_15.ckpt ``` > checkpoint can be produced in training process. ### Result Inference result will be stored in the example path, you can find result like the followings in `eval.log`. ```shell result: {'acc': 0.71976314102564111} ckpt=./ckpt_0/mobilenet-200_625.ckpt ``` ## [Model Export](#contents) ```shell python export.py --platform [PLATFORM] --ckpt_file [CKPT_PATH] --file_format [EXPORT_FORMAT] ``` `EXPORT_FORMAT` should be in ["AIR", "ONNX", "MINDIR"] # [Model description](#contents) ## [Performance](#contents) ### Training Performance | Parameters | MobilenetV2 | | | -------------------------- | ---------------------------------------------------------- | ------------------------- | | Model Version | V1 | V1 | | Resource | Ascend 910, cpu:2.60GHz 192cores, memory:755G | NV SMX2 V100-32G | | uploaded Date | 05/06/2020 | 05/06/2020 | | MindSpore Version | 0.3.0 | 0.3.0 | | Dataset | ImageNet | ImageNet | | Training Parameters | src/config.py | src/config.py | | Optimizer | Momentum | Momentum | | Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy | | outputs | probability | probability | | Loss | 1.908 | 1.913 | | Accuracy | ACC1[71.78%] | ACC1[71.08%] | | Total time | 753 min | 845 min | | Params (M) | 3.3 M | 3.3 M | | Checkpoint for Fine tuning | 27.3 M | 27.3 M | | Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/mobilenetv2)| # [Description of Random Situation](#contents) In train.py, we set the seed which is used by numpy.random, mindspore.common.Initializer, mindspore.ops.composite.random_ops and mindspore.nn.probability.distribution. # [ModelZoo Homepage](#contents) Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).