# Copyright 2020 Huawei Technologies Co., Ltd # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import argparse import mindspore from mindspore import context from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train import Model from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor from mindspore.nn.optim import Adam, Momentum from mindspore.train.loss_scale_manager import FixedLossScaleManager from src.dataset import create_dataset from src.openposenet import OpenPoseNet from src.loss import openpose_loss, BuildTrainNetwork, TrainOneStepWithClipGradientCell from src.config import params from src.utils import get_lr, load_model, MyLossMonitor context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) parser = argparse.ArgumentParser('mindspore openpose training') parser.add_argument('--train_dir', type=str, default='train2017', help='train data dir') parser.add_argument('--train_ann', type=str, default='person_keypoints_train2017.json', help='train annotations json') parser.add_argument('--group_size', type=int, default=1, help='world size of distributed') args, _ = parser.parse_known_args() args.jsonpath_train = os.path.join(params['data_dir'], 'annotations/' + args.train_ann) args.imgpath_train = os.path.join(params['data_dir'], args.train_dir) args.maskpath_train = os.path.join(params['data_dir'], 'ignore_mask_train') def train(): """Train function.""" args.outputs_dir = params['save_model_path'] if args.group_size > 1: init() context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_{}/".format(str(get_rank()))) args.rank = get_rank() else: args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_0/") args.rank = 0 if args.group_size > 1: args.max_epoch = params["max_epoch_train_NP"] args.loss_scale = params['loss_scale'] / 2 args.lr_steps = list(map(int, params["lr_steps_NP"].split(','))) params['train_type'] = params['train_type_NP'] params['optimizer'] = params['optimizer_NP'] params['group_params'] = params['group_params_NP'] else: args.max_epoch = params["max_epoch_train"] args.loss_scale = params['loss_scale'] args.lr_steps = list(map(int, params["lr_steps"].split(','))) # create network print('start create network') criterion = openpose_loss() criterion.add_flags_recursive(fp32=True) network = OpenPoseNet(vggpath=params['vgg_path'], vgg_with_bn=params['vgg_with_bn']) if params["load_pretrain"]: print("load pretrain model:", params["pretrained_model_path"]) load_model(network, params["pretrained_model_path"]) train_net = BuildTrainNetwork(network, criterion) # create dataset if os.path.exists(args.jsonpath_train) and os.path.exists(args.imgpath_train) \ and os.path.exists(args.maskpath_train): print('start create dataset') else: print('Error: wrong data path') return 0 num_worker = 20 if args.group_size > 1 else 48 de_dataset_train = create_dataset(args.jsonpath_train, args.imgpath_train, args.maskpath_train, batch_size=params['batch_size'], rank=args.rank, group_size=args.group_size, num_worker=num_worker, multiprocessing=True, shuffle=True, repeat_num=1) steps_per_epoch = de_dataset_train.get_dataset_size() print("steps_per_epoch: ", steps_per_epoch) # lr scheduler lr_stage, lr_base, lr_vgg = get_lr(params['lr'] * args.group_size, params['lr_gamma'], steps_per_epoch, args.max_epoch, args.lr_steps, args.group_size, lr_type=params['lr_type'], warmup_epoch=params['warmup_epoch']) # optimizer if params['group_params']: vgg19_base_params = list(filter(lambda x: 'base.vgg_base' in x.name, train_net.trainable_params())) base_params = list(filter(lambda x: 'base.conv' in x.name, train_net.trainable_params())) stages_params = list(filter(lambda x: 'base' not in x.name, train_net.trainable_params())) group_params = [{'params': vgg19_base_params, 'lr': lr_vgg}, {'params': base_params, 'lr': lr_base}, {'params': stages_params, 'lr': lr_stage}] if params['optimizer'] == "Momentum": opt = Momentum(group_params, learning_rate=lr_stage, momentum=0.9) elif params['optimizer'] == "Adam": opt = Adam(group_params) else: raise ValueError("optimizer not support.") else: if params['optimizer'] == "Momentum": opt = Momentum(train_net.trainable_params(), learning_rate=lr_stage, momentum=0.9) elif params['optimizer'] == "Adam": opt = Adam(train_net.trainable_params(), learning_rate=lr_stage) else: raise ValueError("optimizer not support.") # callback config_ck = CheckpointConfig(save_checkpoint_steps=params['ckpt_interval'], keep_checkpoint_max=params["keep_checkpoint_max"]) ckpoint_cb = ModelCheckpoint(prefix='{}'.format(args.rank), directory=args.outputs_dir, config=config_ck) time_cb = TimeMonitor(data_size=de_dataset_train.get_dataset_size()) if args.rank == 0: callback_list = [MyLossMonitor(), time_cb, ckpoint_cb] else: callback_list = [MyLossMonitor(), time_cb] # train if params['train_type'] == 'clip_grad': train_net = TrainOneStepWithClipGradientCell(train_net, opt, sens=args.loss_scale) train_net.set_train() model = Model(train_net) elif params['train_type'] == 'fix_loss_scale': loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False) train_net.set_train() model = Model(train_net, optimizer=opt, loss_scale_manager=loss_scale_manager) else: raise ValueError("Type {} is not support.".format(params['train_type'])) print("============== Starting Training ==============") model.train(args.max_epoch, de_dataset_train, callbacks=callback_list, dataset_sink_mode=False) return 0 if __name__ == "__main__": mindspore.common.seed.set_seed(1) train()