# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import argparse import numpy as np from mindspore import Tensor, export, load_checkpoint, load_param_into_net, context from src.unet.unet_model import UNet from src.config import cfg_unet as cfg parser = argparse.ArgumentParser(description='unet export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument('--width', type=int, default=572, help='input width') parser.add_argument('--height', type=int, default=572, help='input height') parser.add_argument("--file_name", type=str, default="unet", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == "__main__": net = UNet(n_channels=cfg["num_channels"], n_classes=cfg["num_classes"]) # return a parameter dict for model param_dict = load_checkpoint(args.ckpt_file) # load the parameter into net load_param_into_net(net, param_dict) input_data = Tensor(np.ones([args.batch_size, cfg["num_channels"], args.height, args.width]).astype(np.float32)) export(net, input_data, file_name=args.file_name, file_format=args.file_format)