# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air, mindir and onnx models""" import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, export from src.gat import GAT from src.config import GatConfig parser = argparse.ArgumentParser(description="GAT export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.") parser.add_argument("--file_name", type=str, default="gat", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == "__main__": if args.dataset == "citeseer": feature_size = [1, 3312, 3703] biases_size = [1, 3312, 3312] num_classes = 6 else: feature_size = [1, 2708, 1433] biases_size = [1, 2708, 2708] num_classes = 7 hid_units = GatConfig.hid_units n_heads = GatConfig.n_heads feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32) biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64) feature_size = feature.shape[2] num_nodes = feature.shape[1] gat_net = GAT(feature_size, num_classes, num_nodes, hid_units, n_heads, attn_drop=0.0, ftr_drop=0.0) gat_net.set_train(False) load_checkpoint(args.ckpt_file, net=gat_net) gat_net.add_flags_recursive(fp16=True) export(gat_net, Tensor(feature), Tensor(biases), file_name=args.file_name, file_format=args.file_format)