# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Architecture""" import os import numpy as np import pytest import mindspore.nn as nn from mindspore import Parameter, Tensor from mindspore.ops import operations as P from mindspore.common import dtype as mstype from mindspore.common.initializer import initializer from mindspore.train.serialization import export class MeanConv(nn.Cell): def __init__(self, feature_in_dim, feature_out_dim, activation, dropout=0.2): super(MeanConv, self).__init__() self.out_weight = Parameter( initializer("XavierUniform", [feature_in_dim * 2, feature_out_dim], dtype=mstype.float32)) if activation == "tanh": self.act = P.Tanh() elif activation == "relu": self.act = P.ReLU() else: raise ValueError("activation should be tanh or relu") self.cast = P.Cast() self.matmul = P.MatMul() self.concat = P.Concat(axis=1) self.reduce_mean = P.ReduceMean(keep_dims=False) self.dropout = nn.Dropout(keep_prob=1 - dropout) def construct(self, self_feature, neigh_feature): neigh_matrix = self.reduce_mean(neigh_feature, 1) neigh_matrix = self.dropout(neigh_matrix) output = self.concat((self_feature, neigh_matrix)) output = self.act(self.matmul(output, self.out_weight)) return output class AttenConv(nn.Cell): def __init__(self, feature_in_dim, feature_out_dim, dropout=0.2): super(AttenConv, self).__init__() self.out_weight = Parameter( initializer("XavierUniform", [feature_in_dim * 2, feature_out_dim], dtype=mstype.float32)) self.cast = P.Cast() self.squeeze = P.Squeeze(1) self.concat = P.Concat(axis=1) self.expanddims = P.ExpandDims() self.softmax = P.Softmax(axis=-1) self.matmul = P.MatMul() self.matmul_3 = P.BatchMatMul() self.matmul_t = P.BatchMatMul(transpose_b=True) self.dropout = nn.Dropout(keep_prob=1 - dropout) def construct(self, self_feature, neigh_feature): query = self.expanddims(self_feature, 1) neigh_matrix = self.dropout(neigh_feature) score = self.matmul_t(query, neigh_matrix) score = self.softmax(score) atten_agg = self.matmul_3(score, neigh_matrix) atten_agg = self.squeeze(atten_agg) output = self.matmul(self.concat((atten_agg, self_feature)), self.out_weight) return output class BGCF(nn.Cell): def __init__(self, dataset_argv, architect_argv, activation, neigh_drop_rate, num_user, num_item, input_dim): super(BGCF, self).__init__() self.user_embed = Parameter(initializer("XavierUniform", [num_user, input_dim], dtype=mstype.float32)) self.item_embed = Parameter(initializer("XavierUniform", [num_item, input_dim], dtype=mstype.float32)) self.cast = P.Cast() self.tanh = P.Tanh() self.shape = P.Shape() self.split = P.Split(0, 2) self.gather = P.Gather() self.reshape = P.Reshape() self.concat_0 = P.Concat(0) self.concat_1 = P.Concat(1) (self.input_dim, self.num_user, self.num_item) = dataset_argv self.layer_dim = architect_argv self.gnew_agg_mean = MeanConv(self.input_dim, self.layer_dim, activation=activation, dropout=neigh_drop_rate[1]) self.gnew_agg_mean.to_float(mstype.float16) self.gnew_agg_user = AttenConv(self.input_dim, self.layer_dim, dropout=neigh_drop_rate[2]) self.gnew_agg_user.to_float(mstype.float16) self.gnew_agg_item = AttenConv(self.input_dim, self.layer_dim, dropout=neigh_drop_rate[2]) self.gnew_agg_item.to_float(mstype.float16) self.user_feature_dim = self.input_dim self.item_feature_dim = self.input_dim self.final_weight = Parameter( initializer("XavierUniform", [self.input_dim * 3, self.input_dim * 3], dtype=mstype.float32)) self.raw_agg_funcs_user = MeanConv(self.input_dim, self.layer_dim, activation=activation, dropout=neigh_drop_rate[0]) self.raw_agg_funcs_user.to_float(mstype.float16) self.raw_agg_funcs_item = MeanConv(self.input_dim, self.layer_dim, activation=activation, dropout=neigh_drop_rate[0]) self.raw_agg_funcs_item.to_float(mstype.float16) def construct(self, u_id, pos_item_id, neg_item_id, pos_users, pos_items, u_group_nodes, u_neighs, u_gnew_neighs, i_group_nodes, i_neighs, i_gnew_neighs, neg_group_nodes, neg_neighs, neg_gnew_neighs, neg_item_num): all_user_embed = self.gather(self.user_embed, self.concat_0((u_id, pos_users)), 0) u_self_matrix_at_layers = self.gather(self.user_embed, u_group_nodes, 0) u_neigh_matrix_at_layers = self.gather(self.item_embed, u_neighs, 0) u_output_mean = self.raw_agg_funcs_user(u_self_matrix_at_layers, u_neigh_matrix_at_layers) u_gnew_neighs_matrix = self.gather(self.item_embed, u_gnew_neighs, 0) u_output_from_gnew_mean = self.gnew_agg_mean(u_self_matrix_at_layers, u_gnew_neighs_matrix) u_output_from_gnew_att = self.gnew_agg_user(u_self_matrix_at_layers, self.concat_1((u_neigh_matrix_at_layers, u_gnew_neighs_matrix))) u_output = self.concat_1((u_output_mean, u_output_from_gnew_mean, u_output_from_gnew_att)) all_user_rep = self.tanh(u_output) all_pos_item_embed = self.gather(self.item_embed, self.concat_0((pos_item_id, pos_items)), 0) i_self_matrix_at_layers = self.gather(self.item_embed, i_group_nodes, 0) i_neigh_matrix_at_layers = self.gather(self.user_embed, i_neighs, 0) i_output_mean = self.raw_agg_funcs_item(i_self_matrix_at_layers, i_neigh_matrix_at_layers) i_gnew_neighs_matrix = self.gather(self.user_embed, i_gnew_neighs, 0) i_output_from_gnew_mean = self.gnew_agg_mean(i_self_matrix_at_layers, i_gnew_neighs_matrix) i_output_from_gnew_att = self.gnew_agg_item(i_self_matrix_at_layers, self.concat_1((i_neigh_matrix_at_layers, i_gnew_neighs_matrix))) i_output = self.concat_1((i_output_mean, i_output_from_gnew_mean, i_output_from_gnew_att)) all_pos_item_rep = self.tanh(i_output) neg_item_embed = self.gather(self.item_embed, neg_item_id, 0) neg_self_matrix_at_layers = self.gather(self.item_embed, neg_group_nodes, 0) neg_neigh_matrix_at_layers = self.gather(self.user_embed, neg_neighs, 0) neg_output_mean = self.raw_agg_funcs_item(neg_self_matrix_at_layers, neg_neigh_matrix_at_layers) neg_gnew_neighs_matrix = self.gather(self.user_embed, neg_gnew_neighs, 0) neg_output_from_gnew_mean = self.gnew_agg_mean(neg_self_matrix_at_layers, neg_gnew_neighs_matrix) neg_output_from_gnew_att = self.gnew_agg_item(neg_self_matrix_at_layers, self.concat_1( (neg_neigh_matrix_at_layers, neg_gnew_neighs_matrix))) neg_output = self.concat_1((neg_output_mean, neg_output_from_gnew_mean, neg_output_from_gnew_att)) neg_output = self.tanh(neg_output) neg_output_shape = self.shape(neg_output) neg_item_rep = self.reshape(neg_output, (self.shape(neg_item_embed)[0], neg_item_num, neg_output_shape[-1])) return all_user_embed, all_user_rep, all_pos_item_embed, all_pos_item_rep, neg_item_embed, neg_item_rep class ForwardBGCF(nn.Cell): def __init__(self, network): super(ForwardBGCF, self).__init__() self.network = network def construct(self, users, items, neg_items, u_neighs, u_gnew_neighs, i_neighs, i_gnew_neighs): _, user_rep, _, item_rep, _, _, = self.network(users, items, neg_items, users, items, users, u_neighs, u_gnew_neighs, items, i_neighs, i_gnew_neighs, items, i_neighs, i_gnew_neighs, 1) return user_rep, item_rep @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_export_bgcf(): num_user, num_item = 7068, 3570 network = BGCF([64, num_user, num_item], 64, "tanh", [0.0, 0.0, 0.0], num_user, num_item, 64) forward_net = ForwardBGCF(network) users = Tensor(np.zeros([num_user,]).astype(np.int32)) items = Tensor(np.zeros([num_item,]).astype(np.int32)) neg_items = Tensor(np.zeros([num_item, 1]).astype(np.int32)) u_test_neighs = Tensor(np.zeros([num_user, 40]).astype(np.int32)) u_test_gnew_neighs = Tensor(np.zeros([num_user, 20]).astype(np.int32)) i_test_neighs = Tensor(np.zeros([num_item, 40]).astype(np.int32)) i_test_gnew_neighs = Tensor(np.zeros([num_item, 20]).astype(np.int32)) input_data = [users, items, neg_items, u_test_neighs, u_test_gnew_neighs, i_test_neighs, i_test_gnew_neighs] file_name = "bgcf" export(forward_net, *input_data, file_name=file_name, file_format="MINDIR") mindir_file = file_name + ".mindir" assert os.path.exists(mindir_file) os.remove(mindir_file) export(forward_net, *input_data, file_name=file_name, file_format="AIR") air_file = file_name + ".air" assert os.path.exists(air_file) os.remove(air_file)