/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common/common.h" #include "lite_cv/lite_mat.h" #include "lite_cv/image_process.h" #include #include #include using namespace mindspore::dataset; class MindDataImageProcess : public UT::Common { public: MindDataImageProcess() {} void SetUp() {} }; void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) { int cv_h = cv_mat.rows; int cv_w = cv_mat.cols; int cv_c = cv_mat.channels(); int lite_h = lite_mat.height_; int lite_w = lite_mat.width_; int lite_c = lite_mat.channel_; ASSERT_TRUE(cv_h == lite_h); ASSERT_TRUE(cv_w == lite_w); ASSERT_TRUE(cv_c == lite_c); } void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) { bool ret; LiteMat lite_mat_resize; ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); ASSERT_TRUE(ret == true); LiteMat lite_mat_convert_float; ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0); ASSERT_TRUE(ret == true); LiteMat lite_mat_crop; ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224); ASSERT_TRUE(ret == true); std::vector means = {0.485, 0.456, 0.406}; std::vector stds = {0.229, 0.224, 0.225}; SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds); return; } cv::Mat cv3CImageProcess(cv::Mat &image) { cv::Mat resize_256_image; cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); cv::Mat float_256_image; resize_256_image.convertTo(float_256_image, CV_32FC3); cv::Mat roi_224_image; cv::Rect roi; roi.x = 16; roi.y = 16; roi.width = 224; roi.height = 224; float_256_image(roi).copyTo(roi_224_image); float meanR = 0.485; float meanG = 0.456; float meanB = 0.406; float varR = 0.229; float varG = 0.224; float varB = 0.225; cv::Scalar mean = cv::Scalar(meanR, meanG, meanB); cv::Scalar var = cv::Scalar(varR, varG, varB); cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean); cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var); cv::Mat imgR1 = roi_224_image - imgMean; cv::Mat imgR2 = imgR1 / imgVar; return imgR2; } TEST_F(MindDataImageProcess, testRGB) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGB); bool ret = false; LiteMat lite_mat_rgb; ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_); } TEST_F(MindDataImageProcess, testLoadByMemPtr) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGB); bool ret = false; int width = rgba_mat.cols; int height = rgba_mat.rows; uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar)); for (int i = 0; i < height; i++) { const uchar *current = rgba_mat.ptr(i); for (int j = 0; j < width; j++) { p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0]; p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1]; p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2]; } } LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8); LiteMat lite_mat_resize; ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256); ASSERT_TRUE(ret == true); LiteMat lite_mat_convert_float; ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0); ASSERT_TRUE(ret == true); LiteMat lite_mat_crop; ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224); ASSERT_TRUE(ret == true); std::vector means = {0.485, 0.456, 0.406}; std::vector stds = {0.229, 0.224, 0.225}; LiteMat lite_norm_mat_cut; ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds); int pad_width = lite_norm_mat_cut.width_ + 20; int pad_height = lite_norm_mat_cut.height_ + 20; float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float)); LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32); ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad); free(p_rgb); free(p_rgb_pad); } TEST_F(MindDataImageProcess, test3C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat cv_image = cv3CImageProcess(image); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_norm_mat_cut; Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut); cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_); CompareMat(cv_image, lite_norm_mat_cut); } bool ReadYUV(const char *filename, int w, int h, uint8_t **data) { FILE *f = fopen(filename, "rb"); if (f == nullptr) { return false; } fseek(f, 0, SEEK_END); int size = ftell(f); int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2); if (size != expect_size) { fclose(f); return false; } fseek(f, 0, SEEK_SET); *data = (uint8_t *)malloc(size); size_t re = fread(*data, 1, size, f); if (re != size) { fclose(f); return false; } fclose(f); return true; } TEST_F(MindDataImageProcess, testNV21ToBGR) { // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv const char *filename = "data/dataset/yuv/test_nv21.yuv"; int w = 1024; int h = 800; uint8_t *yuv_data = nullptr; bool ret = ReadYUV(filename, w, h, &yuv_data); ASSERT_TRUE(ret == true); cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1); memcpy(yuvimg.data, yuv_data, w * h * 3 / 2); cv::Mat rgbimage; cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21); LiteMat lite_mat_bgr; ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_); } TEST_F(MindDataImageProcess, testNV12ToBGR) { // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv const char *filename = "data/dataset/yuv/test_nv12.yuv"; int w = 1024; int h = 800; uint8_t *yuv_data = nullptr; bool ret = ReadYUV(filename, w, h, &yuv_data); ASSERT_TRUE(ret == true); cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1); memcpy(yuvimg.data, yuv_data, w * h * 3 / 2); cv::Mat rgbimage; cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12); LiteMat lite_mat_bgr; ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_); } TEST_F(MindDataImageProcess, testExtractChannel) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat dst_image; cv::extractChannel(src_image, dst_image, 2); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_B; ret = ExtractChannel(lite_mat_bgr, lite_B, 0); ASSERT_TRUE(ret == true); LiteMat lite_R; ret = ExtractChannel(lite_mat_bgr, lite_R, 2); ASSERT_TRUE(ret == true); cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_); // cv::imwrite("./test_lite_r.jpg", dst_imageR); } TEST_F(MindDataImageProcess, testSplit) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); std::vector dst_images; cv::split(src_image, dst_images); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); std::vector lite_all; ret = Split(lite_mat_bgr, lite_all); ASSERT_TRUE(ret == true); ASSERT_TRUE(lite_all.size() == 3); LiteMat lite_r = lite_all[2]; cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_); } TEST_F(MindDataImageProcess, testMerge) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); std::vector dst_images; cv::split(src_image, dst_images); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); std::vector lite_all; ret = Split(lite_mat_bgr, lite_all); ASSERT_TRUE(ret == true); ASSERT_TRUE(lite_all.size() == 3); LiteMat lite_r = lite_all[2]; cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_); LiteMat merge_mat; EXPECT_TRUE(Merge(lite_all, merge_mat)); EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_); EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_); EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_); } void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) { LiteMat lite_mat_resize; int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); ASSERT_TRUE(ret == true); LiteMat lite_mat_convert_float; ret = ConvertTo(lite_mat_resize, lite_mat_convert_float); ASSERT_TRUE(ret == true); LiteMat lite_mat_cut; ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224); ASSERT_TRUE(ret == true); std::vector means = {0.485}; std::vector stds = {0.229}; ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds); ASSERT_TRUE(ret == true); return; } cv::Mat cv1CImageProcess(cv::Mat &image) { cv::Mat gray_image; cv::cvtColor(image, gray_image, CV_BGR2GRAY); cv::Mat resize_256_image; cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); cv::Mat float_256_image; resize_256_image.convertTo(float_256_image, CV_32FC3); cv::Mat roi_224_image; cv::Rect roi; roi.x = 16; roi.y = 16; roi.width = 224; roi.height = 224; float_256_image(roi).copyTo(roi_224_image); float meanR = 0.485; float varR = 0.229; cv::Scalar mean = cv::Scalar(meanR); cv::Scalar var = cv::Scalar(varR); cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean); cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var); cv::Mat imgR1 = roi_224_image - imgMean; cv::Mat imgR2 = imgR1 / imgVar; return imgR2; } TEST_F(MindDataImageProcess, test1C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat cv_image = cv1CImageProcess(image); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_norm_mat_cut; Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut); cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_); CompareMat(cv_image, lite_norm_mat_cut); } TEST_F(MindDataImageProcess, TestPadd) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); int left = 10; int right = 20; int top = 30; int bottom = 40; cv::Mat b_image; cv::Scalar color = cv::Scalar(255, 255, 255); cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); ASSERT_TRUE(ret == true); LiteMat makeborder; ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); ASSERT_TRUE(ret == true); size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)b_image.data[i] - ((uint8_t*)makeborder)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestPadZero) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); int left = 0; int right = 0; int top = 0; int bottom = 0; cv::Mat b_image; cv::Scalar color = cv::Scalar(255, 255, 255); cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); ASSERT_TRUE(ret == true); LiteMat makeborder; ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); ASSERT_TRUE(ret == true); size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)b_image.data[i] - ((uint8_t*)makeborder)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestGetDefaultBoxes) { std::string benchmark = "data/dataset/testLite/default_boxes.bin"; BoxesConfig config; config.img_shape = {300, 300}; config.num_default = {3, 6, 6, 6, 6, 6}; config.feature_size = {19, 10, 5, 3, 2, 1}; config.min_scale = 0.2; config.max_scale = 0.95; config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}}; config.steps = {16, 32, 64, 100, 150, 300}; config.prior_scaling = {0.1, 0.2}; int rows = 1917; int cols = 4; std::vector benchmark_boxes(rows * cols); std::ifstream in(benchmark, std::ios::in | std::ios::binary); in.read(reinterpret_cast(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double)); in.close(); std::vector> default_boxes = GetDefaultBoxes(config); EXPECT_EQ(default_boxes.size(), rows); EXPECT_EQ(default_boxes[0].size(), cols); double distance = 0.0f; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2); } } distance = sqrt(distance); EXPECT_LT(distance, 1e-5); } TEST_F(MindDataImageProcess, TestApplyNms) { std::vector> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}}; std::vector all_scores = {0.6, 0.5, 0.4, 0.9}; std::vector keep = ApplyNms(all_boxes, all_scores, 0.5, 10); ASSERT_TRUE(keep[0] == 3); ASSERT_TRUE(keep[1] == 0); ASSERT_TRUE(keep[2] == 1); } TEST_F(MindDataImageProcess, TestAffineInput) { LiteMat src(3, 3); LiteMat dst; double M[6] = {1}; EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0))); EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0))); EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0))); } TEST_F(MindDataImageProcess, TestAffine) { // The input matrix // 0 0 1 0 0 // 0 0 1 0 0 // 2 2 3 2 2 // 0 0 1 0 0 // 0 0 1 0 0 size_t rows = 5; size_t cols = 5; LiteMat src(rows, cols); for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { if (i == 2 && j == 2) { static_cast(src.data_ptr_)[i * cols + j] = 3; } else if (i == 2) { static_cast(src.data_ptr_)[i * cols + j] = 2; } else if (j == 2) { static_cast(src.data_ptr_)[i * cols + j] = 1; } else { static_cast(src.data_ptr_)[i * cols + j] = 0; } } } // Expect output matrix // 0 0 2 0 0 // 0 0 2 0 0 // 1 1 3 1 1 // 0 0 2 0 0 // 0 0 2 0 0 LiteMat expect(rows, cols); for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { if (i == 2 && j == 2) { static_cast(expect.data_ptr_)[i * cols + j] = 3; } else if (i == 2) { static_cast(expect.data_ptr_)[i * cols + j] = 1; } else if (j == 2) { static_cast(expect.data_ptr_)[i * cols + j] = 2; } else { static_cast(expect.data_ptr_)[i * cols + j] = 0; } } } double angle = 90.0f; cv::Point2f center(rows / 2, cols / 2); cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0); double M[6]; for (size_t i = 0; i < 6; i++) { M[i] = rotate_matrix.at(i); } LiteMat dst; EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0))); for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { EXPECT_EQ(static_cast(expect.data_ptr_)[i * cols + j].c1, static_cast(dst.data_ptr_)[i * cols + j].c1); } } } TEST_F(MindDataImageProcess, TestSubtractUint8) { const size_t cols = 4; // Test uint8 LiteMat src1_uint8(1, cols); LiteMat src2_uint8(1, cols); LiteMat expect_uint8(1, cols); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint8.data_ptr_)[i] = 3; static_cast(src2_uint8.data_ptr_)[i] = 2; static_cast(expect_uint8.data_ptr_)[i] = 1; } LiteMat dst_uint8; EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint8.data_ptr_)[i].c1, static_cast(dst_uint8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractInt8) { const size_t cols = 4; // Test int8 LiteMat src1_int8(1, cols, LDataType(LDataType::INT8)); LiteMat src2_int8(1, cols, LDataType(LDataType::INT8)); LiteMat expect_int8(1, cols, LDataType(LDataType::INT8)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int8.data_ptr_)[i] = 2; static_cast(src2_int8.data_ptr_)[i] = 3; static_cast(expect_int8.data_ptr_)[i] = -1; } LiteMat dst_int8; EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int8.data_ptr_)[i].c1, static_cast(dst_int8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractUInt16) { const size_t cols = 4; // Test uint16 LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint16.data_ptr_)[i] = 2; static_cast(src2_uint16.data_ptr_)[i] = 3; static_cast(expect_uint16.data_ptr_)[i] = 0; } LiteMat dst_uint16; EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint16.data_ptr_)[i].c1, static_cast(dst_uint16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractInt16) { const size_t cols = 4; // Test int16 LiteMat src1_int16(1, cols, LDataType(LDataType::INT16)); LiteMat src2_int16(1, cols, LDataType(LDataType::INT16)); LiteMat expect_int16(1, cols, LDataType(LDataType::INT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int16.data_ptr_)[i] = 2; static_cast(src2_int16.data_ptr_)[i] = 3; static_cast(expect_int16.data_ptr_)[i] = -1; } LiteMat dst_int16; EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int16.data_ptr_)[i].c1, static_cast(dst_int16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractUInt32) { const size_t cols = 4; // Test uint16 LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint32.data_ptr_)[i] = 2; static_cast(src2_uint32.data_ptr_)[i] = 3; static_cast(expect_uint32.data_ptr_)[i] = 0; } LiteMat dst_uint32; EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint32.data_ptr_)[i].c1, static_cast(dst_uint32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractInt32) { const size_t cols = 4; // Test int32 LiteMat src1_int32(1, cols, LDataType(LDataType::INT32)); LiteMat src2_int32(1, cols, LDataType(LDataType::INT32)); LiteMat expect_int32(1, cols, LDataType(LDataType::INT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int32.data_ptr_)[i] = 2; static_cast(src2_int32.data_ptr_)[i] = 4; static_cast(expect_int32.data_ptr_)[i] = -2; } LiteMat dst_int32; EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int32.data_ptr_)[i].c1, static_cast(dst_int32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractFloat) { const size_t cols = 4; // Test float LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_float.data_ptr_)[i] = 3.4; static_cast(src2_float.data_ptr_)[i] = 5.7; static_cast(expect_float.data_ptr_)[i] = -2.3; } LiteMat dst_float; EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float)); for (size_t i = 0; i < cols; i++) { EXPECT_FLOAT_EQ(static_cast(expect_float.data_ptr_)[i].c1, static_cast(dst_float.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideUint8) { const size_t cols = 4; // Test uint8 LiteMat src1_uint8(1, cols); LiteMat src2_uint8(1, cols); LiteMat expect_uint8(1, cols); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint8.data_ptr_)[i] = 8; static_cast(src2_uint8.data_ptr_)[i] = 4; static_cast(expect_uint8.data_ptr_)[i] = 2; } LiteMat dst_uint8; EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint8.data_ptr_)[i].c1, static_cast(dst_uint8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideInt8) { const size_t cols = 4; // Test int8 LiteMat src1_int8(1, cols, LDataType(LDataType::INT8)); LiteMat src2_int8(1, cols, LDataType(LDataType::INT8)); LiteMat expect_int8(1, cols, LDataType(LDataType::INT8)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int8.data_ptr_)[i] = 8; static_cast(src2_int8.data_ptr_)[i] = -4; static_cast(expect_int8.data_ptr_)[i] = -2; } LiteMat dst_int8; EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int8.data_ptr_)[i].c1, static_cast(dst_int8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideUInt16) { const size_t cols = 4; // Test uint16 LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint16.data_ptr_)[i] = 40000; static_cast(src2_uint16.data_ptr_)[i] = 20000; static_cast(expect_uint16.data_ptr_)[i] = 2; } LiteMat dst_uint16; EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint16.data_ptr_)[i].c1, static_cast(dst_uint16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideInt16) { const size_t cols = 4; // Test int16 LiteMat src1_int16(1, cols, LDataType(LDataType::INT16)); LiteMat src2_int16(1, cols, LDataType(LDataType::INT16)); LiteMat expect_int16(1, cols, LDataType(LDataType::INT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int16.data_ptr_)[i] = 30000; static_cast(src2_int16.data_ptr_)[i] = -3; static_cast(expect_int16.data_ptr_)[i] = -10000; } LiteMat dst_int16; EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int16.data_ptr_)[i].c1, static_cast(dst_int16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideUInt32) { const size_t cols = 4; // Test uint16 LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint32.data_ptr_)[i] = 4000000000; static_cast(src2_uint32.data_ptr_)[i] = 4; static_cast(expect_uint32.data_ptr_)[i] = 1000000000; } LiteMat dst_uint32; EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint32.data_ptr_)[i].c1, static_cast(dst_uint32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideInt32) { const size_t cols = 4; // Test int32 LiteMat src1_int32(1, cols, LDataType(LDataType::INT32)); LiteMat src2_int32(1, cols, LDataType(LDataType::INT32)); LiteMat expect_int32(1, cols, LDataType(LDataType::INT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int32.data_ptr_)[i] = 2000000000; static_cast(src2_int32.data_ptr_)[i] = -2; static_cast(expect_int32.data_ptr_)[i] = -1000000000; } LiteMat dst_int32; EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int32.data_ptr_)[i].c1, static_cast(dst_int32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideFloat) { const size_t cols = 4; // Test float LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_float.data_ptr_)[i] = 12.34f; static_cast(src2_float.data_ptr_)[i] = -2.0f; static_cast(expect_float.data_ptr_)[i] = -6.17f; } LiteMat dst_float; EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float)); for (size_t i = 0; i < cols; i++) { EXPECT_FLOAT_EQ(static_cast(expect_float.data_ptr_)[i].c1, static_cast(dst_float.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestMultiplyUint8) { const size_t cols = 4; // Test uint8 LiteMat src1_uint8(1, cols); LiteMat src2_uint8(1, cols); LiteMat expect_uint8(1, cols); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint8.data_ptr_)[i] = 8; static_cast(src2_uint8.data_ptr_)[i] = 4; static_cast(expect_uint8.data_ptr_)[i] = 32; } LiteMat dst_uint8; EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint8.data_ptr_)[i].c1, static_cast(dst_uint8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestMultiplyUInt16) { const size_t cols = 4; // Test int16 LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16)); LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16)); LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int16.data_ptr_)[i] = 60000; static_cast(src2_int16.data_ptr_)[i] = 2; static_cast(expect_int16.data_ptr_)[i] = 65535; } LiteMat dst_int16; EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int16.data_ptr_)[i].c1, static_cast(dst_int16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestMultiplyFloat) { const size_t cols = 4; // Test float LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_float.data_ptr_)[i] = 30.0f; static_cast(src2_float.data_ptr_)[i] = -2.0f; static_cast(expect_float.data_ptr_)[i] = -60.0f; } LiteMat dst_float; EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float)); for (size_t i = 0; i < cols; i++) { EXPECT_FLOAT_EQ(static_cast(expect_float.data_ptr_)[i].c1, static_cast(dst_float.data_ptr_)[i].c1); } }