# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import numpy as np from resnet_torch import resnet50 from mindspore.train.callback import Callback from mindspore.nn.optim.momentum import Momentum from mindspore.train.callback import ModelCheckpoint, CheckpointConfig from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore import Tensor import mindspore.nn as nn from mindspore import context from mindspore.train.serialization import save, load, save_checkpoint, load_checkpoint,\ load_param_into_net, _exec_save_checkpoint,\ _check_filedir_or_create, _chg_model_file_name_if_same_exist, \ _read_file_last_line, context, export context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", enable_task_sink=True, enable_loop_sink=True, enable_ir_fusion=True) def test_resnet50_export(batch_size=1, num_classes=5): context.set_context(enable_ir_fusion=False) input_np = np.random.uniform(0.0, 1.0, size=[batch_size, 3, 224, 224]).astype(np.float32) net = resnet50(batch_size, num_classes) #param_dict = load_checkpoint("./resnet50-1_103.ckpt") #load_param_into_net(net, param_dict) export(net, Tensor(input_np), file_name="./me_resnet50.pb", file_format="GEIR")