# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import functools import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from ..ut_filter import non_graph_engine from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config def test_list_equal(): class Net(nn.Cell): def __init__(self, z: list): super(Net, self).__init__() self.z = z def construct(self, x, y): if self.z == [1, 2, 3]: ret = x else: ret = y return ret x = Tensor(np.ones([6, 8, 10], np.int32)) y = Tensor(np.zeros([3, 4, 5], np.int32)) z = [1, 2, 3] net = Net(z) assert net(x, y) == x def test_list_not_equal(): class Net(nn.Cell): def __init__(self, z: list): super(Net, self).__init__() self.z = z def construct(self, x, y): if self.z == [3, 4, 5]: ret = x else: ret = y return ret x = Tensor(np.ones([6, 8, 10], np.int32)) y = Tensor(np.zeros([3, 4, 5], np.int32)) z = [1, 2, 3] net = Net(z) assert net(x, y) == y def test_list_expansion(): class Net(nn.Cell): def __init__(self, z: list): super(Net, self).__init__() self.z = z def construct(self, x, y): a, b, c = self.z if a == 1 and b == 2 and c == 3: ret = x else: ret = y return ret x = Tensor(np.ones([6, 8, 10], np.int32)) y = Tensor(np.zeros([3, 4, 5], np.int32)) z = [1, 2, 3] net = Net(z) assert net(x, y) == x def test_list_append(): class Net(nn.Cell): def __init__(self, z: list): super(Net, self).__init__() self.z = z def construct(self, x, y): z = [[1, 2], 3] z[0].append(88) z[0].append(99) if z[0][3] == 99: ret = y else: ret = x return ret x = Tensor(np.ones([6, 8, 10], np.int32)) y = Tensor(np.zeros([3, 4, 5], np.int32)) z = [1, 2, 3] net = Net(z) assert net(x, y) == y def test_list_append_2(): class Net(nn.Cell): def __init__(self, z: list): super(Net, self).__init__() self.z = z self.x = 9 def construct(self, x, y): self.z[0].append(88) self.z[0].append(99) if self.z[0][3] == 88: ret = y else: ret = x return ret x = Tensor(np.ones([6, 8, 10], np.int32)) y = Tensor(np.zeros([3, 4, 5], np.int32)) z = [[1, 2], 3] net = Net(z) assert net(x, y) == x class ListOperate(nn.Cell): def __init__(self, ): super(ListOperate, self).__init__() def construct(self, t, l): x = [1, 2, 3, 4, 5, 6] x[2] = 9 x[1] = x[3] + 11 x[3] = x[1] + x[0] x[0] = x[2] * x[4] x[5] = x[1] - x[2] x[4] = x[3] / x[2] x.append(8) x.append(8) x.append(t) x.append(l) x.append(l) return x class AxisListNet(nn.Cell): def __init__(self): super(AxisListNet, self).__init__() self.reduce_sum = P.ReduceSum() self.reduce_mean = P.ReduceMean() self.reduce_max = P.ReduceMax() self.reduce_min = P.ReduceMin() self.add_n = P.AddN() self.axis = [0, 1, 2] def construct(self, x): ret_sum = self.reduce_sum(x, self.axis) ret_mean = self.reduce_mean(x, self.axis) ret_max = self.reduce_max(x, self.axis) ret_min = self.reduce_min(x, self.axis) ret = [ret_sum, ret_mean, ret_max, ret_min] return self.add_n(ret) + ret_sum class AxisListEmptyNet(nn.Cell): def __init__(self): super(AxisListEmptyNet, self).__init__() self.reduce_sum = P.ReduceSum() self.axis = [] def construct(self, x): return self.reduce_sum(x, self.axis) class AxisListDefaultNet(nn.Cell): def __init__(self): super(AxisListDefaultNet, self).__init__() self.reduce_sum = P.ReduceSum() def construct(self, x): return self.reduce_sum(x) test_case_ops = [ ('ListOperate', { 'block': ListOperate(), 'desc_inputs': [Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)), [2, 3, 4]]}), ('AxisList', { 'block': AxisListNet(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))]}), ('AxisListEmpty', { 'block': AxisListEmptyNet(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))]}), ('AxisListDefault', { 'block': AxisListDefaultNet(), 'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))]}), ] test_case_lists = [test_case_ops] test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists) # use -k to select certain testcast # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm import mindspore.context as context @non_graph_engine @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_exec_case