# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test pooling api """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _executor class AvgNet(nn.Cell): def __init__(self, kernel_size, stride=None): super(AvgNet, self).__init__() self.avgpool = nn.AvgPool2d(kernel_size, stride) def construct(self, x): return self.avgpool(x) def test_compile_avg(): net = AvgNet(3, 1) x = Tensor(np.ones([1, 3, 16, 50]).astype(np.float32)) _executor.compile(net, x) class MaxNet(nn.Cell): """ MaxNet definition """ def __init__(self, kernel_size, stride=None, padding=0): _ = padding super(MaxNet, self).__init__() self.maxpool = nn.MaxPool2d(kernel_size, stride) def construct(self, x): return self.maxpool(x) def test_compile_max(): net = MaxNet(3, stride=1, padding=0) x = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32)) _executor.compile(net, x) class Avg1dNet(nn.Cell): def __init__(self, kernel_size, stride=None): super(Avg1dNet, self).__init__() self.avg1d = nn.AvgPool1d(kernel_size, stride) def construct(self, x): return self.avg1d(x) def test_avg1d(): net = Avg1dNet(6, 1) input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32)) _executor.compile(net, input_)