# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air, onnx, mindir models""" import argparse import numpy as np import mindspore as ms from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 from src.config import config parser = argparse.ArgumentParser(description='fasterrcnn_export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--file_name", type=str, default="faster_rcnn", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") parser.add_argument('--ckpt_file', type=str, default='', help='fasterrcnn ckpt file.') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) if __name__ == '__main__': net = Faster_Rcnn_Resnet50(config=config) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) img = Tensor(np.zeros([config.test_batch_size, 3, config.img_height, config.img_width]), ms.float16) img_metas = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, 4]), ms.float16) gt_bboxes = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.float16) gt_label = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.int32) gt_num = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.bool_) export(net, img, img_metas, gt_bboxes, gt_label, gt_num, file_name=args.file_name, file_format=args.file_format)