/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common/common.h" #include "minddata/dataset/include/datasets.h" #include "minddata/dataset/include/transforms.h" #include "minddata/dataset/include/vision.h" using namespace mindspore::dataset; using mindspore::dataset::BorderType; using mindspore::dataset::InterpolationMode; using mindspore::dataset::Tensor; class MindDataTestPipeline : public UT::DatasetOpTesting { protected: }; // Tests for vision ops (in alphabetical order) TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastSuccess1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create auto contrast object with default values std::shared_ptr auto_contrast = vision::AutoContrast(); EXPECT_NE(auto_contrast, nullptr); // Create a Map operation on ds ds = ds->Map({auto_contrast}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 15); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastSuccess2."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create auto contrast object std::shared_ptr auto_contrast = vision::AutoContrast(10, {10, 20}); EXPECT_NE(auto_contrast, nullptr); // Create a Map operation on ds ds = ds->Map({auto_contrast}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 15); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestAutoContrastFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastFail with invalid params."; // Testing invalid cutoff < 0 std::shared_ptr auto_contrast1 = vision::AutoContrast(-1.0); EXPECT_EQ(auto_contrast1, nullptr); // Testing invalid cutoff > 100 std::shared_ptr auto_contrast2 = vision::AutoContrast(110.0, {10, 20}); EXPECT_EQ(auto_contrast2, nullptr); } TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr bound_box_augment = vision::BoundingBoxAugment(vision::RandomRotation({90.0}), 1.0); EXPECT_NE(bound_box_augment, nullptr); // Create a Map operation on ds ds = ds->Map({bound_box_augment}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentFail with invalid params."; // Testing invalid ratio < 0.0 std::shared_ptr bound_box_augment = vision::BoundingBoxAugment(vision::RandomRotation({90.0}), -1.0); EXPECT_EQ(bound_box_augment, nullptr); // Testing invalid ratio > 1.0 std::shared_ptr bound_box_augment1 = vision::BoundingBoxAugment(vision::RandomRotation({90.0}), 2.0); EXPECT_EQ(bound_box_augment1, nullptr); // Testing invalid transform std::shared_ptr bound_box_augment2 = vision::BoundingBoxAugment(nullptr, 0.5); EXPECT_EQ(bound_box_augment2, nullptr); } TEST_F(MindDataTestPipeline, TestCenterCrop) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create centre crop object with square crop std::shared_ptr centre_out1 = vision::CenterCrop({30}); EXPECT_NE(centre_out1, nullptr); // Create a Map operation on ds ds = ds->Map({centre_out1}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 15); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCenterCropFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with invalid parameters."; // center crop height value negative std::shared_ptr center_crop = mindspore::dataset::vision::CenterCrop({-32, 32}); EXPECT_EQ(center_crop, nullptr); // center crop width value negative center_crop = mindspore::dataset::vision::CenterCrop({32, -32}); EXPECT_EQ(center_crop, nullptr); // 0 value would result in nullptr center_crop = mindspore::dataset::vision::CenterCrop({0, 32}); EXPECT_EQ(center_crop, nullptr); // center crop with 3 values center_crop = mindspore::dataset::vision::CenterCrop({10, 20, 30}); EXPECT_EQ(center_crop, nullptr); } TEST_F(MindDataTestPipeline, TestCropFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCrop with invalid parameters."; // wrong width std::shared_ptr crop = mindspore::dataset::vision::Crop({0, 0}, {32, -32}); EXPECT_EQ(crop, nullptr); // wrong height crop = mindspore::dataset::vision::Crop({0, 0}, {-32, -32}); EXPECT_EQ(crop, nullptr); // zero height crop = mindspore::dataset::vision::Crop({0, 0}, {0, 32}); EXPECT_EQ(crop, nullptr); // negative coordinates crop = mindspore::dataset::vision::Crop({-1, 0}, {32, 32}); EXPECT_EQ(crop, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess1."; // Testing CutMixBatch on a batch of CHW images // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; int number_of_classes = 10; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr hwc_to_chw = vision::HWC2CHW(); EXPECT_NE(hwc_to_chw, nullptr); // Create a Map operation on ds ds = ds->Map({hwc_to_chw}, {"image"}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(number_of_classes); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = vision::CutMixBatch(mindspore::dataset::ImageBatchFormat::kNCHW, 1.0, 1.0); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; auto label = row["label"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); MS_LOG(INFO) << "Label shape: " << label->shape(); EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 3 == image->shape()[1] && 32 == image->shape()[2] && 32 == image->shape()[3], true); EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] && number_of_classes == label->shape()[1], true); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess2."; // Calling CutMixBatch on a batch of HWC images with default values of alpha and prob // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; int number_of_classes = 10; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(number_of_classes); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = vision::CutMixBatch(mindspore::dataset::ImageBatchFormat::kNHWC); EXPECT_NE(cutmix_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({cutmix_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; auto label = row["label"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); MS_LOG(INFO) << "Label shape: " << label->shape(); EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 32 == image->shape()[1] && 32 == image->shape()[2] && 3 == image->shape()[3], true); EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] && number_of_classes == label->shape()[1], true); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail1 with invalid negative alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = vision::CutMixBatch(mindspore::dataset::ImageBatchFormat::kNHWC, -1, 0.5); EXPECT_EQ(cutmix_batch_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail2 with invalid negative prob parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = vision::CutMixBatch(mindspore::dataset::ImageBatchFormat::kNHWC, 1, -0.5); EXPECT_EQ(cutmix_batch_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail3 with invalid zero alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = vision::CutMixBatch(mindspore::dataset::ImageBatchFormat::kNHWC, 0.0, 0.5); EXPECT_EQ(cutmix_batch_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchFail4 with invalid greater than 1 prob parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 10; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr cutmix_batch_op = vision::CutMixBatch(mindspore::dataset::ImageBatchFormat::kNHWC, 1, 1.5); EXPECT_EQ(cutmix_batch_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutOutFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail1 with invalid parameters."; // Create object for the tensor op // Invalid negative length std::shared_ptr cutout_op = vision::CutOut(-10); EXPECT_EQ(cutout_op, nullptr); // Invalid negative number of patches cutout_op = vision::CutOut(10, -1); EXPECT_EQ(cutout_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutOutFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail2 with invalid params, boundary cases."; // Create object for the tensor op // Invalid zero length std::shared_ptr cutout_op = vision::CutOut(0); EXPECT_EQ(cutout_op, nullptr); // Invalid zero number of patches cutout_op = vision::CutOut(10, 0); EXPECT_EQ(cutout_op, nullptr); } TEST_F(MindDataTestPipeline, TestCutOut) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOut."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr cut_out1 = vision::CutOut(30, 5); EXPECT_NE(cut_out1, nullptr); std::shared_ptr cut_out2 = vision::CutOut(30); EXPECT_NE(cut_out2, nullptr); // Create a Map operation on ds ds = ds->Map({cut_out1, cut_out2}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestDecode) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDecode."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr decode = vision::Decode(true); EXPECT_NE(decode, nullptr); // Create a Map operation on ds ds = ds->Map({decode}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestHwcToChw) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestHwcToChw."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr channel_swap = vision::HWC2CHW(); EXPECT_NE(channel_swap, nullptr); // Create a Map operation on ds ds = ds->Map({channel_swap}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); // check if the image is in NCHW EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] && 2268 == image->shape()[2] && 4032 == image->shape()[3], true); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestInvert) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestInvert."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 20)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr invert_op = vision::Invert(); EXPECT_NE(invert_op, nullptr); // Create a Map operation on ds ds = ds->Map({invert_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail1 with negative alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = vision::MixUpBatch(-1); EXPECT_EQ(mixup_batch_op, nullptr); } TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail2 with zero alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = vision::MixUpBatch(0.0); EXPECT_EQ(mixup_batch_op, nullptr); } TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchSuccess1 with explicit alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = vision::MixUpBatch(2.0); EXPECT_NE(mixup_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({mixup_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchSuccess1 with default alpha parameter."; // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 5; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr one_hot_op = transforms::OneHot(10); EXPECT_NE(one_hot_op, nullptr); // Create a Map operation on ds ds = ds->Map({one_hot_op}, {"label"}); EXPECT_NE(ds, nullptr); std::shared_ptr mixup_batch_op = vision::MixUpBatch(); EXPECT_NE(mixup_batch_op, nullptr); // Create a Map operation on ds ds = ds->Map({mixup_batch_op}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalize) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalize."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr normalize = vision::Normalize({121.0, 115.0, 0.0}, {70.0, 68.0, 71.0}); EXPECT_NE(normalize, nullptr); // Create a Map operation on ds ds = ds->Map({normalize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeFail with invalid parameters."; // std value at 0.0 std::shared_ptr normalize = mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}); EXPECT_EQ(normalize, nullptr); // mean out of range normalize = mindspore::dataset::vision::Normalize({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0}); EXPECT_EQ(normalize, nullptr); // mean out of range normalize = mindspore::dataset::vision::Normalize({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0}); EXPECT_EQ(normalize, nullptr); // mean out of range normalize = mindspore::dataset::vision::Normalize({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0}); EXPECT_EQ(normalize, nullptr); // normalize with 2 values (not 3 values) for mean normalize = mindspore::dataset::vision::Normalize({121.0, 115.0}, {70.0, 68.0, 71.0}); EXPECT_EQ(normalize, nullptr); // normalize with 2 values (not 3 values) for standard deviation normalize = mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {68.0, 71.0}); EXPECT_EQ(normalize, nullptr); } TEST_F(MindDataTestPipeline, TestNormalizePad) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePad."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr normalizepad = vision::NormalizePad({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}, "float32"); EXPECT_NE(normalizepad, nullptr); // Create a Map operation on ds ds = ds->Map({normalizepad}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; EXPECT_EQ(image->shape()[2], 4); MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalizePadFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePadFail with invalid parameters."; // std value at 0.0 std::shared_ptr normalizepad = mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}); EXPECT_EQ(normalizepad, nullptr); // normalizepad with 2 values (not 3 values) for mean normalizepad = mindspore::dataset::vision::NormalizePad({121.0, 115.0}, {70.0, 68.0, 71.0}); EXPECT_EQ(normalizepad, nullptr); // normalizepad with 2 values (not 3 values) for standard deviation normalizepad = mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0}); EXPECT_EQ(normalizepad, nullptr); // normalizepad with invalid dtype normalizepad = mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123"); EXPECT_EQ(normalizepad, nullptr); } TEST_F(MindDataTestPipeline, TestPad) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPad."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric); EXPECT_NE(pad_op1, nullptr); std::shared_ptr pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge); EXPECT_NE(pad_op2, nullptr); std::shared_ptr pad_op3 = vision::Pad({1, 4}); EXPECT_NE(pad_op3, nullptr); // Create a Map operation on ds ds = ds->Map({pad_op1, pad_op2, pad_op3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomAffineFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineFail with invalid parameters."; // Create objects for the tensor ops std::shared_ptr affine = vision::RandomAffine({0.0, 0.0}, {}); EXPECT_EQ(affine, nullptr); // Invalid number of values for translate affine = vision::RandomAffine({0.0, 0.0}, {1, 1, 1, 1, 1}); EXPECT_EQ(affine, nullptr); // Invalid number of values for shear affine = vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0}); EXPECT_EQ(affine, nullptr); } TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess1 with non-default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr affine = vision::RandomAffine({30.0, 30.0}, {-1.0, 1.0, -1.0, 1.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0}); EXPECT_NE(affine, nullptr); // Create a Map operation on ds ds = ds->Map({affine}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess2 with default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr affine = vision::RandomAffine({0.0, 0.0}); EXPECT_NE(affine, nullptr); // Create a Map operation on ds ds = ds->Map({affine}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColor) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColor with non-default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Valid case: Set lower bound and upper bound to be the same value zero std::shared_ptr random_color_op_1 = vision::RandomColor(0.0, 0.0); EXPECT_NE(random_color_op_1, nullptr); // Failure case: Set invalid lower bound greater than upper bound std::shared_ptr random_color_op_2 = vision::RandomColor(1.0, 0.1); EXPECT_EQ(random_color_op_2, nullptr); // Valid case: Set lower bound as zero and less than upper bound std::shared_ptr random_color_op_3 = vision::RandomColor(0.0, 1.1); EXPECT_NE(random_color_op_3, nullptr); // Failure case: Set invalid negative lower bound std::shared_ptr random_color_op_4 = vision::RandomColor(-0.5, 0.5); EXPECT_EQ(random_color_op_4, nullptr); // Create a Map operation on ds ds = ds->Map({random_color_op_1, random_color_op_3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColorAdjust) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjust."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Use single value for vectors std::shared_ptr random_color_adjust1 = vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5}); EXPECT_NE(random_color_adjust1, nullptr); // Use same 2 values for vectors std::shared_ptr random_color_adjust2 = vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5}, {0.5, 0.5}); EXPECT_NE(random_color_adjust2, nullptr); // Use different 2 value for vectors std::shared_ptr random_color_adjust3 = vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5}, {0.25, 0.5}); EXPECT_NE(random_color_adjust3, nullptr); // Use default input values std::shared_ptr random_color_adjust4 = vision::RandomColorAdjust(); EXPECT_NE(random_color_adjust4, nullptr); // Use subset of explicitly set parameters std::shared_ptr random_color_adjust5 = vision::RandomColorAdjust({0.0, 0.5}, {0.25}); EXPECT_NE(random_color_adjust5, nullptr); // Create a Map operation on ds ds = ds->Map( {random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4, random_color_adjust5}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomColorAdjustFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjustFail."; // brightness out of range std::shared_ptr random_color_adjust1 = vision::RandomColorAdjust({-1.0}); EXPECT_EQ(random_color_adjust1, nullptr); // contrast out of range std::shared_ptr random_color_adjust2 = vision::RandomColorAdjust({1.0}, {-0.1}); EXPECT_EQ(random_color_adjust2, nullptr); // saturation out of range std::shared_ptr random_color_adjust3 = vision::RandomColorAdjust({0.0}, {0.0}, {-0.2}); EXPECT_EQ(random_color_adjust3, nullptr); // hue out of range std::shared_ptr random_color_adjust4 = vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {-0.6}); EXPECT_EQ(random_color_adjust4, nullptr); std::shared_ptr random_color_adjust5 = vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {-0.5, 0.6}); EXPECT_EQ(random_color_adjust5, nullptr); std::shared_ptr random_color_adjust6 = vision::RandomColorAdjust({0.0}, {0.0}, {0.0}, {0.51}); EXPECT_EQ(random_color_adjust6, nullptr); } TEST_F(MindDataTestPipeline, TestRandomCropSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing siez of size vector is 1 std::shared_ptr random_crop = vision::RandomCrop({20}); EXPECT_NE(random_crop, nullptr); // Testing siez of size vector is 2 std::shared_ptr random_crop1 = vision::RandomCrop({20, 20}); EXPECT_NE(random_crop1, nullptr); // Testing siez of paddiing vector is 1 std::shared_ptr random_crop2 = vision::RandomCrop({20, 20}, {10}); EXPECT_NE(random_crop2, nullptr); // Testing siez of paddiing vector is 2 std::shared_ptr random_crop3 = vision::RandomCrop({20, 20}, {10, 20}); EXPECT_NE(random_crop3, nullptr); // Testing siez of paddiing vector is 2 std::shared_ptr random_crop4 = vision::RandomCrop({20, 20}, {10, 10, 10, 10}); EXPECT_NE(random_crop4, nullptr); // Testing siez of fill_value vector is 1 std::shared_ptr random_crop5 = vision::RandomCrop({20, 20}, {10, 10, 10, 10}, false, {5}); EXPECT_NE(random_crop5, nullptr); // Testing siez of fill_value vector is 3 std::shared_ptr random_crop6 = vision::RandomCrop({20, 20}, {10, 10, 10, 10}, false, {4, 4, 4}); EXPECT_NE(random_crop6, nullptr); // Create a Map operation on ds ds = ds->Map({random_crop, random_crop1, random_crop2, random_crop3, random_crop4, random_crop5, random_crop6}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomCropFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropFail with invalid parameters."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing the size parameter is negative. std::shared_ptr random_crop = vision::RandomCrop({-28, 28}); EXPECT_EQ(random_crop, nullptr); // Testing the size parameter is None. std::shared_ptr random_crop1 = vision::RandomCrop({}); EXPECT_EQ(random_crop1, nullptr); // Testing the size of size vector is 3. std::shared_ptr random_crop2 = vision::RandomCrop({28, 28, 28}); EXPECT_EQ(random_crop2, nullptr); // Testing the padding parameter is negative. std::shared_ptr random_crop3 = vision::RandomCrop({28, 28}, {-5}); EXPECT_EQ(random_crop3, nullptr); // Testing the size of padding vector is empty. std::shared_ptr random_crop4 = vision::RandomCrop({28, 28}, {}); EXPECT_EQ(random_crop4, nullptr); // Testing the size of padding vector is 3. std::shared_ptr random_crop5 = vision::RandomCrop({28, 28}, {5, 5, 5}); EXPECT_EQ(random_crop5, nullptr); // Testing the size of padding vector is 5. std::shared_ptr random_crop6 = vision::RandomCrop({28, 28}, {5, 5, 5, 5, 5}); EXPECT_EQ(random_crop6, nullptr); // Testing the size of fill_value vector is empty. std::shared_ptr random_crop7 = vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {}); EXPECT_EQ(random_crop7, nullptr); // Testing the size of fill_value vector is 2. std::shared_ptr random_crop8 = vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {0, 0}); EXPECT_EQ(random_crop8, nullptr); // Testing the size of fill_value vector is 4. std::shared_ptr random_crop9 = vision::RandomCrop({28, 28}, {0, 0, 0, 0}, false, {0, 0, 0, 0}); EXPECT_EQ(random_crop9, nullptr); } TEST_F(MindDataTestPipeline, TestRandomCropWithBboxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropWithBboxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_crop = mindspore::dataset::vision::RandomCropWithBBox({128, 128}); EXPECT_NE(random_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_crop}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0], 128); EXPECT_EQ(image->shape()[1], 128); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomCropWithBboxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomCropWithBboxFail with invalid parameters."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // The size parameter is negative. std::shared_ptr random_crop = vision::RandomCropWithBBox({-10}); EXPECT_EQ(random_crop, nullptr); // The parameter in the padding vector is negative. std::shared_ptr random_crop1 = vision::RandomCropWithBBox({10, 10}, {-2, 2, 2, 2}); EXPECT_EQ(random_crop1, nullptr); // The size container is empty. std::shared_ptr random_crop2 = vision::RandomCropWithBBox({}); EXPECT_EQ(random_crop2, nullptr); // The size of the size container is too large. std::shared_ptr random_crop3 = vision::RandomCropWithBBox({10, 10, 10}); EXPECT_EQ(random_crop3, nullptr); // The padding container is empty. std::shared_ptr random_crop4 = vision::RandomCropWithBBox({10, 10}, {}); EXPECT_EQ(random_crop4, nullptr); // The size of the padding container is too large. std::shared_ptr random_crop5 = vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5, 5}); EXPECT_EQ(random_crop5, nullptr); // The fill_value container is empty. std::shared_ptr random_crop6 = vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5}, false, {}); EXPECT_EQ(random_crop6, nullptr); // The size of the fill_value container is too large. std::shared_ptr random_crop7 = vision::RandomCropWithBBox({10, 10}, {5, 5, 5, 5}, false, {3, 3, 3, 3}); EXPECT_EQ(random_crop7, nullptr); } TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipFail with invalid parameters."; // Create object for the tensor op // Invalid negative input std::shared_ptr random_horizontal_flip_op = vision::RandomHorizontalFlip(-0.5); EXPECT_EQ(random_horizontal_flip_op, nullptr); // Invalid >1 input random_horizontal_flip_op = vision::RandomHorizontalFlip(2); EXPECT_EQ(random_horizontal_flip_op, nullptr); } TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_horizontal_flip_op = vision::RandomHorizontalFlipWithBBox(0.5); EXPECT_NE(random_horizontal_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_horizontal_flip_op}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomHorizontalFlipWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalFlipWithBBoxFail with invalid parameters."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Incorrect prob parameter. std::shared_ptr random_horizontal_flip_op = vision::RandomHorizontalFlipWithBBox(-1.0); EXPECT_EQ(random_horizontal_flip_op, nullptr); // Incorrect prob parameter. std::shared_ptr random_horizontal_flip_op1 = vision::RandomHorizontalFlipWithBBox(2.0); EXPECT_EQ(random_horizontal_flip_op1, nullptr); } TEST_F(MindDataTestPipeline, TestRandomHorizontalAndVerticalFlip) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomHorizontalAndVerticalFlip for horizontal and vertical flips."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.75); EXPECT_NE(random_vertical_flip_op, nullptr); std::shared_ptr random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5); EXPECT_NE(random_horizontal_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomPosterizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeFail with invalid parameters."; // Create objects for the tensor ops // Invalid max > 8 std::shared_ptr posterize = vision::RandomPosterize({1, 9}); EXPECT_EQ(posterize, nullptr); // Invalid min < 1 posterize = vision::RandomPosterize({0, 8}); EXPECT_EQ(posterize, nullptr); // min > max posterize = vision::RandomPosterize({8, 1}); EXPECT_EQ(posterize, nullptr); // empty posterize = vision::RandomPosterize({}); EXPECT_EQ(posterize, nullptr); } TEST_F(MindDataTestPipeline, TestRandomPosterizeSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeSuccess1 with non-default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr posterize = vision::RandomPosterize({1, 4}); EXPECT_NE(posterize, nullptr); // Create a Map operation on ds ds = ds->Map({posterize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomPosterizeSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomPosterizeSuccess2 with default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr posterize = vision::RandomPosterize(); EXPECT_NE(posterize, nullptr); // Create a Map operation on ds ds = ds->Map({posterize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeSuccess1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 5)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize = vision::RandomResize({66}); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 66, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 5); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeSuccess2 with (height, width) input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 3)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize = vision::RandomResize({66, 77}); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 66 && image->shape()[1] == 77, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 6); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeFail incorrect size."; // RandomResize : size must only contain positive integers std::shared_ptr random_resize1 = vision::RandomResize({-66, 77}); EXPECT_EQ(random_resize1, nullptr); // RandomResize : size must only contain positive integers std::shared_ptr random_resize2 = vision::RandomResize({0, 77}); EXPECT_EQ(random_resize2, nullptr); // RandomResize : size must be a vector of one or two values std::shared_ptr random_resize3 = vision::RandomResize({1, 2, 3}); EXPECT_EQ(random_resize3, nullptr); // RandomResize : size must be a vector of one or two values std::shared_ptr random_resize4 = vision::RandomResize({}); EXPECT_EQ(random_resize4, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxSuccess1 with single integer input."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize = vision::RandomResizeWithBBox({88}); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 88, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxSuccess2 with (height, width) input."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resize = vision::RandomResizeWithBBox({88, 99}); EXPECT_NE(random_resize, nullptr); // Create a Map operation on ds ds = ds->Map({random_resize}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 88 && image->shape()[1] == 99, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 8); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizeWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomResizeWithBBoxFail incorrect size."; // RandomResizeWithBBox : size must only contain positive integers std::shared_ptr random_resize_with_bbox1 = vision::RandomResizeWithBBox({-66, 77}); EXPECT_EQ(random_resize_with_bbox1, nullptr); // RandomResizeWithBBox : size must be a vector of one or two values std::shared_ptr random_resize_with_bbox2 = vision::RandomResizeWithBBox({1, 2, 3}); EXPECT_EQ(random_resize_with_bbox2, nullptr); // RandomResizeWithBBox : size must be a vector of one or two values std::shared_ptr random_resize_with_bbox3 = vision::RandomResizeWithBBox({}); EXPECT_EQ(random_resize_with_bbox3, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropSuccess1) { // Testing RandomResizedCrop with default values // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCrop({5}); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 5, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropSuccess2) { // Testing RandomResizedCrop with non-default values // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCrop({5, 10}, {0.25, 0.75}, {0.5, 1.25}, mindspore::dataset::InterpolationMode::kArea, 20); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 10, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail1) { // This should fail because size has negative value // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCrop({5, -10}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail2) { // This should fail because scale isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCrop({5, 10}, {4, 3}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail3) { // This should fail because ratio isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCrop({5, 10}, {4, 5}, {7, 6}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropFail4) { // This should fail because scale has a size of more than 2 // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCrop({5, 10, 20}, {4, 5}, {7, 6}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxSuccess1) { // Testing RandomResizedCropWithBBox with default values // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCropWithBBox({5}); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 5, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 4); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxSuccess2) { // Testing RandomResizedCropWithBBox with non-default values // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 4)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCropWithBBox( {5, 10}, {0.25, 0.75}, {0.5, 1.25}, mindspore::dataset::InterpolationMode::kArea, 20); EXPECT_NE(random_resized_crop, nullptr); // Create a Map operation on ds ds = ds->Map({random_resized_crop}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 5 && image->shape()[1] == 10, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 4); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail1) { // This should fail because size has negative value // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCropWithBBox({5, -10}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail2) { // This should fail because scale isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCropWithBBox({5, 10}, {4, 3}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail3) { // This should fail because ratio isn't in {min, max} format // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCropWithBBox({5, 10}, {4, 5}, {7, 6}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomResizedCropWithBBoxFail4) { // This should fail because scale has a size of more than 2 // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, "all", RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_resized_crop = vision::RandomResizedCropWithBBox({5, 10, 20}, {4, 5}, {7, 6}); EXPECT_EQ(random_resized_crop, nullptr); } TEST_F(MindDataTestPipeline, TestRandomRotation) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotation."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing the size of degrees is 1 std::shared_ptr random_rotation_op = vision::RandomRotation({180}); EXPECT_NE(random_rotation_op, nullptr); // Testing the size of degrees is 2 std::shared_ptr random_rotation_op1 = vision::RandomRotation({-180, 180}); EXPECT_NE(random_rotation_op1, nullptr); // Testing the size of fill_value is 1 std::shared_ptr random_rotation_op2 = vision::RandomRotation({180}, InterpolationMode::kNearestNeighbour, false, {-1, -1}, {2}); EXPECT_NE(random_rotation_op2, nullptr); // Testing the size of fill_value is 3 std::shared_ptr random_rotation_op3 = vision::RandomRotation({180}, InterpolationMode::kNearestNeighbour, false, {-1, -1}, {2, 2, 2}); EXPECT_NE(random_rotation_op3, nullptr); // Create a Map operation on ds ds = ds->Map({random_rotation_op, random_rotation_op1, random_rotation_op2, random_rotation_op3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomRotationFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotationFail with invalid parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Testing the size of degrees vector is 0 std::shared_ptr random_rotation_op = vision::RandomRotation({}); EXPECT_EQ(random_rotation_op, nullptr); // Testing the size of degrees vector is 3 std::shared_ptr random_rotation_op1 = vision::RandomRotation({-50.0, 50.0, 100.0}); EXPECT_EQ(random_rotation_op1, nullptr); // Test the case where the first column value of degrees is greater than the second column value std::shared_ptr random_rotation_op2 = vision::RandomRotation({50.0, -50.0}); EXPECT_EQ(random_rotation_op2, nullptr); // Testing the size of center vector is 1 std::shared_ptr random_rotation_op3 = vision::RandomRotation({-50.0, 50.0}, InterpolationMode::kNearestNeighbour, false, {-1.0}); EXPECT_EQ(random_rotation_op3, nullptr); // Testing the size of center vector is 3 std::shared_ptr random_rotation_op4 = vision::RandomRotation({-50.0, 50.0}, InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0, -1.0}); EXPECT_EQ(random_rotation_op4, nullptr); // Testing the size of fill_value vector is 2 std::shared_ptr random_rotation_op5 = vision::RandomRotation({-50.0, 50.0}, InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0}, {2, 2}); EXPECT_EQ(random_rotation_op5, nullptr); // Testing the size of fill_value vector is 4 std::shared_ptr random_rotation_op6 = vision::RandomRotation({-50.0, 50.0}, InterpolationMode::kNearestNeighbour, false, {-1.0, -1.0}, {2, 2, 2, 2}); EXPECT_EQ(random_rotation_op6, nullptr); } TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicySuccess."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 7)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Valid case: TensorOperation is not null and probability is between (0,1) std::shared_ptr random_select_subpolicy = vision::RandomSelectSubpolicy( {{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}); EXPECT_NE(random_select_subpolicy, nullptr); // Create a Map operation on ds ds = ds->Map({random_select_subpolicy}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 7); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicyFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSelectSubpolicyFail."; // RandomSelectSubpolicy : probability of transform must be between 0.0 and 1.0 std::shared_ptr random_select_subpolicy1 = vision::RandomSelectSubpolicy( {{{vision::Invert(), 1.5}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}); EXPECT_EQ(random_select_subpolicy1, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy2 = vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {{nullptr, 1}}}); EXPECT_EQ(random_select_subpolicy2, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy3 = vision::RandomSelectSubpolicy({}); EXPECT_EQ(random_select_subpolicy3, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy4 = vision::RandomSelectSubpolicy({{{vision::Invert(), 0.5}, {vision::Equalize(), 0.5}}, {}}); EXPECT_EQ(random_select_subpolicy4, nullptr); // RandomSelectSubpolicy: policy must not be empty std::shared_ptr random_select_subpolicy5 = vision::RandomSelectSubpolicy({{{}, {vision::Equalize(), 0.5}}, {{vision::Resize({15, 15}), 1}}}); EXPECT_EQ(random_select_subpolicy5, nullptr); } TEST_F(MindDataTestPipeline, TestRandomSharpness) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSharpness."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Valid case: Input start degree and end degree std::shared_ptr random_sharpness_op_1 = vision::RandomSharpness({0.4, 2.3}); EXPECT_NE(random_sharpness_op_1, nullptr); // Failure case: Empty degrees vector std::shared_ptr random_sharpness_op_2 = vision::RandomSharpness({}); EXPECT_EQ(random_sharpness_op_2, nullptr); // Valid case: Use default input values std::shared_ptr random_sharpness_op_3 = vision::RandomSharpness(); EXPECT_NE(random_sharpness_op_3, nullptr); // Failure case: Single degree value std::shared_ptr random_sharpness_op_4 = vision::RandomSharpness({0.1}); EXPECT_EQ(random_sharpness_op_4, nullptr); // Create a Map operation on ds ds = ds->Map({random_sharpness_op_1, random_sharpness_op_3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSolarizeSucess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeSucess1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::vector threshold = {10, 100}; std::shared_ptr random_solarize = mindspore::dataset::vision::RandomSolarize(threshold); EXPECT_NE(random_solarize, nullptr); // Create a Map operation on ds ds = ds->Map({random_solarize}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSolarizeSucess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeSuccess2 with default parameters."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_solarize = mindspore::dataset::vision::RandomSolarize(); EXPECT_NE(random_solarize, nullptr); // Create a Map operation on ds ds = ds->Map({random_solarize}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomSolarizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomSolarizeFail with invalid parameters."; std::vector threshold = {13, 1}; std::shared_ptr random_solarize = mindspore::dataset::vision::RandomSolarize(threshold); EXPECT_EQ(random_solarize, nullptr); threshold = {1, 2, 3}; random_solarize = mindspore::dataset::vision::RandomSolarize(threshold); EXPECT_EQ(random_solarize, nullptr); threshold = {1}; random_solarize = mindspore::dataset::vision::RandomSolarize(threshold); EXPECT_EQ(random_solarize, nullptr); threshold = {}; random_solarize = mindspore::dataset::vision::RandomSolarize(threshold); EXPECT_EQ(random_solarize, nullptr); } TEST_F(MindDataTestPipeline, TestRandomVerticalFlipFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipFail with invalid parameters."; // Create object for the tensor op // Invalid negative input std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(-0.5); EXPECT_EQ(random_vertical_flip_op, nullptr); // Invalid >1 input random_vertical_flip_op = vision::RandomVerticalFlip(1.1); EXPECT_EQ(random_vertical_flip_op, nullptr); } TEST_F(MindDataTestPipeline, TestResizeFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize with invalid parameters."; // negative resize value std::shared_ptr resize_op = mindspore::dataset::vision::Resize({30, -30}); EXPECT_EQ(resize_op, nullptr); // zero resize value resize_op = mindspore::dataset::vision::Resize({0, 30}); EXPECT_EQ(resize_op, nullptr); // resize with 3 values resize_op = mindspore::dataset::vision::Resize({30, 20, 10}); EXPECT_EQ(resize_op, nullptr); } TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_with_bbox_op = vision::ResizeWithBBox({30}); EXPECT_NE(resize_with_bbox_op, nullptr); std::shared_ptr resize_with_bbox_op1 = vision::ResizeWithBBox({30, 30}); EXPECT_NE(resize_with_bbox_op1, nullptr); // Create a Map operation on ds ds = ds->Map({resize_with_bbox_op, resize_with_bbox_op1}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestResizeWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxFail with invalid parameters."; // Testing negative resize value std::shared_ptr resize_with_bbox_op = vision::ResizeWithBBox({10, -10}); EXPECT_EQ(resize_with_bbox_op, nullptr); // Testing negative resize value std::shared_ptr resize_with_bbox_op1 = vision::ResizeWithBBox({-10}); EXPECT_EQ(resize_with_bbox_op1, nullptr); // Testinig zero resize value std::shared_ptr resize_with_bbox_op2 = vision::ResizeWithBBox({0, 10}); EXPECT_EQ(resize_with_bbox_op2, nullptr); // Testing resize with 3 values std::shared_ptr resize_with_bbox_op3 = vision::ResizeWithBBox({10, 10, 10}); EXPECT_EQ(resize_with_bbox_op3, nullptr); } TEST_F(MindDataTestPipeline, TestRandomVerticalFlipWithBBoxSuccess) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipWithBBoxSuccess."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlipWithBBox(0.4); EXPECT_NE(random_vertical_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 3); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomVerticalFlipWithBBoxFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomVerticalFlipWithBBoxFail with invalid parameters."; // Create an VOC Dataset std::string folder_path = datasets_root_path_ + "/testVOC2012_2"; std::shared_ptr ds = VOC(folder_path, "Detection", "train", {}, true, SequentialSampler(0, 3)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops // Incorrect prob parameter. std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlipWithBBox(-0.5); EXPECT_EQ(random_vertical_flip_op, nullptr); // Incorrect prob parameter. std::shared_ptr random_vertical_flip_op1 = vision::RandomVerticalFlipWithBBox(3.0); EXPECT_EQ(random_vertical_flip_op1, nullptr); } TEST_F(MindDataTestPipeline, TestResize1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 6)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 4; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create resize object with single integer input std::shared_ptr resize_op = vision::Resize({30}); EXPECT_NE(resize_op, nullptr); // Create a Map operation on ds ds = ds->Map({resize_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 24); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRescaleSucess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, SequentialSampler(0, 1)); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); auto image = row["image"]; // Create objects for the tensor ops std::shared_ptr rescale = mindspore::dataset::vision::Rescale(1.0, 0.0); EXPECT_NE(rescale, nullptr); // Convert to the same type std::shared_ptr type_cast = transforms::TypeCast("uint8"); EXPECT_NE(type_cast, nullptr); ds = ds->Map({rescale, type_cast}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter1 = ds->CreateIterator(); EXPECT_NE(iter1, nullptr); // Iterate the dataset and get each row1 std::unordered_map> row1; iter1->GetNextRow(&row1); auto image1 = row1["image"]; EXPECT_EQ(*image, *image1); // Manually terminate the pipeline iter1->Stop(); } TEST_F(MindDataTestPipeline, TestRescaleSucess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleSucess2 with different params."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 1)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr rescale = mindspore::dataset::vision::Rescale(1.0 / 255, 1.0); EXPECT_NE(rescale, nullptr); ds = ds->Map({rescale}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 1); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRescaleFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleFail with invalid params."; // incorrect negative rescale parameter std::shared_ptr rescale = mindspore::dataset::vision::Rescale(-1.0, 0.0); EXPECT_EQ(rescale, nullptr); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 4)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg = vision::SoftDvppDecodeRandomCropResizeJpeg({500}); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 500, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 4); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegSuccess2 with (height, width) input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 6)); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr soft_dvpp_decode_random_crop_resize_jpeg = vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20); EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); EXPECT_EQ(image->shape()[0] == 500 && image->shape()[1] == 600, true); iter->GetNextRow(&row); } EXPECT_EQ(i, 6); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters."; // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers auto soft_dvpp_decode_random_crop_resize_jpeg1 = vision::SoftDvppDecodeRandomCropResizeJpeg({-500, 600}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg1, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers auto soft_dvpp_decode_random_crop_resize_jpeg2 = vision::SoftDvppDecodeRandomCropResizeJpeg({-500}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg2, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values auto soft_dvpp_decode_random_crop_resize_jpeg3 = vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600, 700}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg3, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0 auto soft_dvpp_decode_random_crop_resize_jpeg4 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {-0.1, 0.9}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg4, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max) auto soft_dvpp_decode_random_crop_resize_jpeg5 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.6, 0.2}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg5, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values auto soft_dvpp_decode_random_crop_resize_jpeg6 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.6, 0.7}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg6, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0 auto soft_dvpp_decode_random_crop_resize_jpeg7 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {-0.2, 0.4}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg7, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max) auto soft_dvpp_decode_random_crop_resize_jpeg8 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.4, 0.2}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg8, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values auto soft_dvpp_decode_random_crop_resize_jpeg9 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2, 0.3}); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg9, nullptr); // SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1 auto soft_dvpp_decode_random_crop_resize_jpeg10 = vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2}, 0); EXPECT_EQ(soft_dvpp_decode_random_crop_resize_jpeg10, nullptr); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess1 with single integer input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 4)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 3; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create SoftDvppDecodeResizeJpeg object with single integer input std::shared_ptr soft_dvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1134}); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_resize_jpeg_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 12); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess2 with (height, width) input."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 2)); EXPECT_NE(ds, nullptr); // Create SoftDvppDecodeResizeJpeg object with single integer input std::shared_ptr soft_dvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({100, 200}); EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr); // Create a Map operation on ds ds = ds->Map({soft_dvpp_decode_resize_jpeg_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 2); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegFail) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegFail with incorrect size."; // CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values std::shared_ptr soft_dvpp_decode_resize_jpeg_op1 = vision::SoftDvppDecodeResizeJpeg({}); EXPECT_EQ(soft_dvpp_decode_resize_jpeg_op1, nullptr); // SoftDvppDecodeResizeJpeg: size must be a vector of one or two values std::shared_ptr soft_dvpp_decode_resize_jpeg_op2 = vision::SoftDvppDecodeResizeJpeg({1, 2, 3}); EXPECT_EQ(soft_dvpp_decode_resize_jpeg_op2, nullptr); // SoftDvppDecodeResizeJpeg: size must only contain positive integers std::shared_ptr soft_dvpp_decode_resize_jpeg_op3 = vision::SoftDvppDecodeResizeJpeg({20, -20}); EXPECT_EQ(soft_dvpp_decode_resize_jpeg_op3, nullptr); // SoftDvppDecodeResizeJpeg: size must only contain positive integers std::shared_ptr soft_dvpp_decode_resize_jpeg_op4 = vision::SoftDvppDecodeResizeJpeg({0}); EXPECT_EQ(soft_dvpp_decode_resize_jpeg_op4, nullptr); } TEST_F(MindDataTestPipeline, TestUniformAugmentFail1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail1 with invalid num_ops parameter."; // Create objects for the tensor ops std::shared_ptr random_crop_op = vision::RandomCrop({28, 28}); EXPECT_NE(random_crop_op, nullptr); std::shared_ptr center_crop_op = vision::CenterCrop({16, 16}); EXPECT_NE(center_crop_op, nullptr); // UniformAug: num_ops must be greater than 0 std::shared_ptr uniform_aug_op1 = vision::UniformAugment({random_crop_op, center_crop_op}, 0); EXPECT_EQ(uniform_aug_op1, nullptr); // UniformAug: num_ops must be greater than 0 std::shared_ptr uniform_aug_op2 = vision::UniformAugment({random_crop_op, center_crop_op}, -1); EXPECT_EQ(uniform_aug_op2, nullptr); // UniformAug: num_ops is greater than transforms size std::shared_ptr uniform_aug_op3 = vision::UniformAugment({random_crop_op, center_crop_op}, 3); EXPECT_EQ(uniform_aug_op3, nullptr); } TEST_F(MindDataTestPipeline, TestUniformAugmentFail2) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugmentFail2 with invalid transform."; // UniformAug: transform ops must not be null std::shared_ptr uniform_aug_op1 = vision::UniformAugment({vision::RandomCrop({-28})}, 1); EXPECT_EQ(uniform_aug_op1, nullptr); // UniformAug: transform ops must not be null std::shared_ptr uniform_aug_op2 = vision::UniformAugment({vision::RandomCrop({28}), nullptr}, 2); EXPECT_EQ(uniform_aug_op2, nullptr); // UniformAug: transform list must not be empty std::shared_ptr uniform_aug_op3 = vision::UniformAugment({}, 1); EXPECT_EQ(uniform_aug_op3, nullptr); } TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugWithOps."; // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, "all", RandomSampler(false, 20)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 1; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_op = vision::Resize({30, 30}); EXPECT_NE(resize_op, nullptr); std::shared_ptr random_crop_op = vision::RandomCrop({28, 28}); EXPECT_NE(random_crop_op, nullptr); std::shared_ptr center_crop_op = vision::CenterCrop({16, 16}); EXPECT_NE(center_crop_op, nullptr); std::shared_ptr uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2); EXPECT_NE(uniform_aug_op, nullptr); // Create a Map operation on ds ds = ds->Map({resize_op, uniform_aug_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestVisionOperationName) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVisionOperationName."; std::string correct_name; // Create object for the tensor op, and check the name std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); correct_name = "RandomVerticalFlip"; EXPECT_EQ(correct_name, random_vertical_flip_op->Name()); // Create object for the tensor op, and check the name std::shared_ptr softDvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1, 1}); correct_name = "SoftDvppDecodeResizeJpeg"; EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name()); }