# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor, Parameter import mindspore as ms import mindspore.common.api as me from mindspore.common.initializer import initializer from hccl_test.manage.api import Hccl def test_initializer_weight_slice(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, weight): super().__init__() self.weight = Parameter(weight, "w1") self.matmul = P.MatMul(transpose_a=False, transpose_b=True).set_strategy(strategy1) self.relu = P.ReLU().set_strategy(strategy2) def construct(self, x): out = self.matmul(x, self.weight) out = self.relu(out) return out def get_slice(rank): hccl = Hccl() rank_save = hccl.rank_id hccl.rank_id = rank context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 1), (4, 1)) strategy2 = ((2, 4),) context.set_context(mode=context.GRAPH_MODE) exe = me._executor x = Tensor(np.ones([32, 32]), dtype=ms.float32) weight = initializer("Uniform", [64, 32], ms.float32) net = Net(strategy1, strategy2, weight) net.set_auto_parallel() exe.compile(net, x, auto_parallel_mode=True, phase='train') hccl.rank_id = rank_save return net.parameters_dict()['w1'].data.asnumpy() slice0 = get_slice(0) slice1 = get_slice(1) slice4 = get_slice(4) slice_shape = slice0.shape slice0 = slice0.flatten() slice1 = slice1.flatten() slice4 = slice4.flatten() expect_slice_shape = (16, 32) assert expect_slice_shape == slice_shape assert all(slice0 == slice4) assert any(slice0 != slice1) if __name__ == '__main__': test_initializer_weight_slice()