# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): return C.grad_all(self.network)(x, y) class Net(nn.Cell): def __init__(self, strategy): super().__init__() self.reshape = P.Reshape() self.mul = P.Mul().set_strategy(strategy) self.relu = P.ReLU() def construct(self, x, y): out = self.reshape(x, (10000, 36, 1)) out = self.mul(out, y) out = self.relu(out) return out def compile_net(net, x, y): net.set_auto_parallel() _executor.compile(net, x, y) def test_reshape_parameter_data_parallel(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy = ((8, 1, 1), (8, 1, 1)) net = GradWrap(NetWithLoss(Net(strategy))) x = Tensor(np.ones([10000, 36]), dtype=ms.float32) y = Tensor(np.ones([10000, 36, 1]), dtype=ms.float32) compile_net(net, x, y) def test_reshape_parameter_model_parallel(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(strategy))) x = Tensor(np.ones([10000, 36]), dtype=ms.float32) y = Tensor(np.ones([10000, 36, 1]), dtype=ms.float32) compile_net(net, x, y)