# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing unique op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as ops def compare(array, res, idx, cnt): data = ds.NumpySlicesDataset([array], column_names="x") data = data.batch(2) data = data.map(operations=ops.Unique(), input_columns=["x"], output_columns=["x", "y", "z"], column_order=["x", "y", "z"]) for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): np.testing.assert_array_equal(res, d["x"]) np.testing.assert_array_equal(idx, d["y"]) np.testing.assert_array_equal(cnt, d["z"]) def test_duplicate_basics(): compare([0, 1, 2, 1, 2, 3], np.array([0, 1, 2, 3]), np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1])) compare([0.0, 1.0, 2.0, 1.0, 2.0, 3.0], np.array([0.0, 1.0, 2.0, 3.0]), np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1])) compare([1, 1, 1, 1, 1, 1], np.array([1]), np.array([0, 0, 0, 0, 0, 0]), np.array([6])) if __name__ == "__main__": test_duplicate_basics()