# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor from mindspore.ops.composite import GradOperation @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_mirror_pad(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test1_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] test_1_paddings = ((0, 0), (0, 0), (1, 1), (2, 2)) test1_arr_exp = [[[[6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 5, 4], [9, 8, 7, 8, 9, 8, 7], [6, 5, 4, 5, 6, 5, 4]]]] test2_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] test_2_paddings = ((0, 0), (0, 0), (1, 1), (2, 2)) test2_arr_exp = [[[[2, 1, 1, 2, 3, 3, 2], [2, 1, 1, 2, 3, 3, 2], [5, 4, 4, 5, 6, 6, 5], [8, 7, 7, 8, 9, 9, 8], [8, 7, 7, 8, 9, 9, 8]]]] reflectOp = nn.Pad(mode='REFLECT', paddings=test_1_paddings) symmOp = nn.Pad(mode='SYMMETRIC', paddings=test_2_paddings) x_test_1 = Tensor(np.array(test1_arr_in), dtype=mindspore.float32) x_test_2 = Tensor(np.array(test2_arr_in), dtype=mindspore.float32) y_test_1 = reflectOp(x_test_1).asnumpy() y_test_2 = symmOp(x_test_2).asnumpy() print(np.array(test1_arr_in)) print(y_test_1) np.testing.assert_equal(np.array(test1_arr_exp), y_test_1) np.testing.assert_equal(np.array(test2_arr_exp), y_test_2) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, input_, output_grad): return self.grad(self.network)(input_, output_grad) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.pad = nn.Pad(mode="REFLECT", paddings=((0, 0), (0, 0), (1, 0), (0, 2))) def construct(self, x): return self.pad(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_mirror_pad_backprop(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] # size -> 3*3 test_arr_in = Tensor(test_arr_in, dtype=mindspore.float32) dy = (np.ones((1, 1, 4, 5)) * 0.1).astype(np.float32) expected_dx = np.array([[[[0.2, 0.2, 0.1], [0.4, 0.4, 0.2], [0.2, 0.2, 0.1]]]]) net = Grad(Net()) dx = net(test_arr_in, Tensor(dy)) dx = dx[0].asnumpy() np.testing.assert_array_almost_equal(dx, expected_dx)