# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for retinanet""" import os import argparse import time import numpy as np from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.retinanet import retinanet50, resnet50, retinanetInferWithDecoder from src.dataset import create_retinanet_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord from src.config import config from src.coco_eval import metrics from src.box_utils import default_boxes def retinanet_eval(dataset_path, ckpt_path): """retinanet evaluation.""" batch_size = 1 ds = create_retinanet_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False) backbone = resnet50(config.num_classes) net = retinanet50(backbone, config) net = retinanetInferWithDecoder(net, Tensor(default_boxes), config) print("Load Checkpoint!") param_dict = load_checkpoint(ckpt_path) net.init_parameters_data() load_param_into_net(net, param_dict) net.set_train(False) i = batch_size total = ds.get_dataset_size() * batch_size start = time.time() pred_data = [] print("\n========================================\n") print("total images num: ", total) print("Processing, please wait a moment.") for data in ds.create_dict_iterator(output_numpy=True): img_id = data['img_id'] img_np = data['image'] image_shape = data['image_shape'] output = net(Tensor(img_np)) for batch_idx in range(img_np.shape[0]): pred_data.append({"boxes": output[0].asnumpy()[batch_idx], "box_scores": output[1].asnumpy()[batch_idx], "img_id": int(np.squeeze(img_id[batch_idx])), "image_shape": image_shape[batch_idx]}) percent = round(i / total * 100., 2) print(f' {str(percent)} [{i}/{total}]', end='\r') i += batch_size cost_time = int((time.time() - start) * 1000) print(f' 100% [{total}/{total}] cost {cost_time} ms') mAP = metrics(pred_data) print("\n========================================\n") print(f"mAP: {mAP}") if __name__ == '__main__': parser = argparse.ArgumentParser(description='retinanet evaluation') parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"), help="run platform, only support Ascend.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id) prefix = "retinanet_eval.mindrecord" mindrecord_dir = config.mindrecord_dir mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") if args_opt.dataset == "voc": config.coco_root = config.voc_root if not os.path.exists(mindrecord_file): if not os.path.isdir(mindrecord_dir): os.makedirs(mindrecord_dir) if args_opt.dataset == "coco": if os.path.isdir(config.coco_root): print("Create Mindrecord.") data_to_mindrecord_byte_image("coco", False, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("coco_root not exits.") elif args_opt.dataset == "voc": if os.path.isdir(config.voc_dir) and os.path.isdir(config.voc_root): print("Create Mindrecord.") voc_data_to_mindrecord(mindrecord_dir, False, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("voc_root or voc_dir not exits.") else: if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path): print("Create Mindrecord.") data_to_mindrecord_byte_image("other", False, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("IMAGE_DIR or ANNO_PATH not exits.") print("Start Eval!") retinanet_eval(mindrecord_file, config.checkpoint_path)