# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test bnn layers""" import numpy as np from mindspore import Tensor from mindspore.common.initializer import TruncatedNormal import mindspore.nn as nn from mindspore.nn import TrainOneStepCell from mindspore.nn.probability import bnn_layers from mindspore.ops import operations as P from mindspore import context from dataset import create_dataset context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU") def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class BNNLeNet5(nn.Cell): """ bayesian Lenet network Args: num_class (int): Num classes. Default: 10. Returns: Tensor, output tensor Examples: >>> BNNLeNet5(num_class=10) """ def __init__(self, num_class=10): super(BNNLeNet5, self).__init__() self.num_class = num_class self.conv1 = bnn_layers.ConvReparam(1, 6, 5, stride=1, padding=0, has_bias=False, pad_mode="valid") self.conv2 = conv(6, 16, 5) self.fc1 = bnn_layers.DenseReparam(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() self.reshape = P.Reshape() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x def train_model(train_net, net, dataset): accs = [] loss_sum = 0 for _, data in enumerate(dataset.create_dict_iterator(output_numpy=True)): train_x = Tensor(data['image'].astype(np.float32)) label = Tensor(data['label'].astype(np.int32)) loss = train_net(train_x, label) output = net(train_x) log_output = P.LogSoftmax(axis=1)(output) acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) accs.append(acc) loss_sum += loss.asnumpy() loss_sum = loss_sum / len(accs) acc_mean = np.mean(accs) return loss_sum, acc_mean def validate_model(net, dataset): accs = [] for _, data in enumerate(dataset.create_dict_iterator(output_numpy=True)): train_x = Tensor(data['image'].astype(np.float32)) label = Tensor(data['label'].astype(np.int32)) output = net(train_x) log_output = P.LogSoftmax(axis=1)(output) acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) accs.append(acc) acc_mean = np.mean(accs) return acc_mean if __name__ == "__main__": network = BNNLeNet5() criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001) net_with_loss = bnn_layers.WithBNNLossCell(network, criterion, 60000, 0.000001) train_bnn_network = TrainOneStepCell(net_with_loss, optimizer) train_bnn_network.set_train() train_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/train', 64, 1) test_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/test', 64, 1) epoch = 100 for i in range(epoch): train_loss, train_acc = train_model(train_bnn_network, network, train_set) valid_acc = validate_model(network, test_set) print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tvalidation Accuracy: {:.4f}'.format( i, train_loss, train_acc, valid_acc))