## Demo_image_classification The following describes how to use the MindSpore Lite C++ APIs (Android JNIs) and MindSpore Lite image classification models to perform on-device inference, classify the content captured by a device camera, and display the most possible classification result on the application's image preview screen. ### 运行依赖 - Android Studio 3.2 or later (Android 4.0 or later is recommended.) - Native development kit (NDK) 21.3 - CMake 3.10.2 [CMake](https://cmake.org/download) - Android software development kit (SDK) 26 or later - JDK 1.8 or later [JDK]( https://www.oracle.com/downloads/otn-pub/java/JDK/) ### 构建与运行 1. Load the sample source code to Android Studio and install the corresponding SDK. (After the SDK version is specified, Android Studio automatically installs the SDK.) ![start_home](images/home.png) Start Android Studio, click `File > Settings > System Settings > Android SDK`, and select the corresponding SDK. As shown in the following figure, select an SDK and click `OK`. Android Studio automatically installs the SDK. ![start_sdk](images/sdk_management.png) (Optional) If an NDK version issue occurs during the installation, manually download the corresponding [NDK version](https://developer.android.com/ndk/downloads) (the version used in the sample code is 21.3). Specify the SDK location in `Android NDK location` of `Project Structure`. ![project_structure](images/project_structure.png) 2. Connect to an Android device and runs the image classification application. Connect to the Android device through a USB cable for debugging. Click `Run 'app'` to run the sample project on your device. ![run_app](images/run_app.PNG) For details about how to connect the Android Studio to a device for debugging, see . The mobile phone needs to be turn on "USB debugging mode" before Android Studio can recognize the mobile phone. Huawei mobile phones generally turn on "USB debugging model" in Settings > system and update > developer Options > USB debugging. 3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。 Continue the installation on the Android device. After the installation is complete, you can view the content captured by a camera and the inference result. ![result](images/app_result.jpg) ## Detailed Description of the Sample Program This image classification sample program on the Android device includes a Java layer and a JNI layer. At the Java layer, the Android Camera 2 API is used to enable a camera to obtain image frames and process images. At the JNI layer, the model inference process is completed in [Runtime](https://www.mindspore.cn/lite/tutorial/en/master/use/runtime.html). ### Sample Program Structure ``` app │ ├── src/main │ ├── assets # resource files | | └── mobilenetv2.ms # model file │ | │ ├── cpp # main logic encapsulation classes for model loading and prediction | | | | | ├── MindSporeNetnative.cpp # JNI methods related to MindSpore calling │ | └── MindSporeNetnative.h # header file │ | │ ├── java # application code at the Java layer │ │ └── com.huawei.himindsporedemo │ │ ├── gallery.classify # implementation related to image processing and MindSpore JNI calling │ │ │ └── ... │ │ └── widget # implementation related to camera enabling and drawing │ │ └── ... │ │ │ ├── res # resource files related to Android │ └── AndroidManifest.xml # Android configuration file │ ├── CMakeList.txt # CMake compilation entry file │ ├── build.gradle # Other Android configuration file ├── download.gradle # MindSpore version download └── ... ``` ### Configuring MindSpore Lite Dependencies When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/lite/tutorial/en/master/build.html) to generate the MindSpore Lite version.  ``` android{ defaultConfig{ externalNativeBuild{ cmake{ arguments "-DANDROID_STL=c++_shared" } } ndk{ abiFilters'armeabi-v7a', 'arm64-v8a' } } } ``` Create a link to the `.so` library file in the `app/CMakeLists.txt` file: ``` # ============== Set MindSpore Dependencies. ============= include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp) include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/third_party/flatbuffers/include) include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}) include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include) include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/ir/dtype) include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/include/schema) add_library(mindspore-lite SHARED IMPORTED ) add_library(minddata-lite SHARED IMPORTED ) set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so) set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so) # --------------- MindSpore Lite set End. -------------------- # Link target library. target_link_libraries( ... # --- mindspore --- minddata-lite mindspore-lite ... ) ``` * In this example, the download.gradle File configuration auto download MindSpore Lite version, placed in the 'app / src / main/cpp/mindspore_lite_x.x.x-minddata-arm64-cpu' directory. Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. MindSpore Lite version [MindSpore Lite version]( https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so) ### Downloading and Deploying a Model File In this example, the download.gradle File configuration auto download `mobilenetv2.ms `and placed in the 'app / libs / arm64-v8a' directory. Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. mobilenetv2.ms [mobilenetv2.ms]( https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms) ### Compiling On-Device Inference Code Call MindSpore Lite C++ APIs at the JNI layer to implement on-device inference. The inference code process is as follows. For details about the complete code, see `src/cpp/MindSporeNetnative.cpp`. 1. Load the MindSpore Lite model file and build the context, session, and computational graph for inference. - Load a model file. Create and configure the context for model inference. ```cpp // Buffer is the model data passed in by the Java layer jlong bufferLen = env->GetDirectBufferCapacity(buffer); char *modelBuffer = CreateLocalModelBuffer(env, buffer); ``` - Create a session. ```cpp void **labelEnv = new void *; MSNetWork *labelNet = new MSNetWork; *labelEnv = labelNet; // Create context. mindspore::lite::Context *context = new mindspore::lite::Context; context->thread_num_ = num_thread; // Create the mindspore session. labelNet->CreateSessionMS(modelBuffer, bufferLen, "device label", context); delete(context); ``` - Load the model file and build a computational graph for inference. ```cpp void MSNetWork::CreateSessionMS(char* modelBuffer, size_t bufferLen, std::string name, mindspore::lite::Context* ctx) { CreateSession(modelBuffer, bufferLen, ctx); session = mindspore::session::LiteSession::CreateSession(ctx); auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen); int ret = session->CompileGraph(model); } ``` 2. Convert the input image into the Tensor format of the MindSpore model. Convert the image data to be detected into the Tensor format of the MindSpore model. ```cpp // Convert the Bitmap image passed in from the JAVA layer to Mat for OpenCV processing BitmapToMat(env, srcBitmap, matImageSrc); // Processing such as zooming the picture size. matImgPreprocessed = PreProcessImageData(matImageSrc); ImgDims inputDims; inputDims.channel = matImgPreprocessed.channels(); inputDims.width = matImgPreprocessed.cols; inputDims.height = matImgPreprocessed.rows; float *dataHWC = new float[inputDims.channel * inputDims.width * inputDims.height] // Copy the image data to be detected to the dataHWC array. // The dataHWC[image_size] array here is the intermediate variable of the input MindSpore model tensor. float *ptrTmp = reinterpret_cast(matImgPreprocessed.data); for(int i = 0; i < inputDims.channel * inputDims.width * inputDims.height; i++){ dataHWC[i] = ptrTmp[i]; } // Assign dataHWC[image_size] to the input tensor variable. auto msInputs = mSession->GetInputs(); auto inTensor = msInputs.front(); memcpy(inTensor->MutableData(), dataHWC, inputDims.channel * inputDims.width * inputDims.height * sizeof(float)); delete[] (dataHWC); ``` 3. Perform inference on the input tensor based on the model, obtain the output tensor, and perform post-processing. - Perform graph execution and on-device inference. ```cpp // After the model and image tensor data is loaded, run inference. auto status = mSession->RunGraph(); ``` - Obtain the output data. ```cpp auto names = mSession->GetOutputTensorNames(); std::unordered_map msOutputs; for (const auto &name : names) { auto temp_dat =mSession->GetOutputByTensorName(name); msOutputs.insert(std::pair {name, temp_dat}); } std::string retStr = ProcessRunnetResult(msOutputs, ret); ``` - Perform post-processing of the output data. ```cpp std::string ProcessRunnetResult(std::unordered_map msOutputs, int runnetRet) { std::unordered_map::iterator iter; iter = msOutputs.begin(); // The mobilenetv2.ms model output just one branch. auto outputTensor = iter->second; int tensorNum = outputTensor->ElementsNum(); MS_PRINT("Number of tensor elements:%d", tensorNum); // Get a pointer to the first score. float *temp_scores = static_cast(outputTensor->MutableData()); float scores[RET_CATEGORY_SUM]; for (int i = 0; i < RET_CATEGORY_SUM; ++i) { if (temp_scores[i] > 0.5) { MS_PRINT("MindSpore scores[%d] : [%f]", i, temp_scores[i]); } scores[i] = temp_scores[i]; } // Score for each category. // Converted to text information that needs to be displayed in the APP. std::string categoryScore = ""; for (int i = 0; i < RET_CATEGORY_SUM; ++i) { categoryScore += labels_name_map[i]; categoryScore += ":"; std::string score_str = std::to_string(scores[i]); categoryScore += score_str; categoryScore += ";"; } return categoryScore; } ```