# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import matplotlib.pyplot as plt from mindspore import log as logger import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.py_transforms as F DATA_DIR = "../data/dataset/testImageNetData/train/" def visualize(image_original, image_ua): """ visualizes the image using DE op and Numpy op """ num = len(image_ua) for i in range(num): plt.subplot(2, num, i + 1) plt.imshow(image_original[i]) plt.title("Original image") plt.subplot(2, num, i + num + 1) plt.imshow(image_ua[i]) plt.title("DE UniformAugment image") plt.show() def test_uniform_augment(plot=False, num_ops=2): """ Test UniformAugment """ logger.info("Test UniformAugment") # Original Images ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) transforms_original = F.ComposeOp([F.Decode(), F.Resize((224,224)), F.ToTensor()]) ds_original = ds.map(input_columns="image", operations=transforms_original()) ds_original = ds_original.batch(512) for idx, (image,label) in enumerate(ds_original): if idx == 0: images_original = np.transpose(image, (0, 2,3,1)) else: images_original = np.append(images_original, np.transpose(image, (0, 2,3,1)), axis=0) # UniformAugment Images ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) transform_list = [F.RandomRotation(45), F.RandomColor(), F.RandomSharpness(), F.Invert(), F.AutoContrast(), F.Equalize()] transforms_ua = F.ComposeOp([F.Decode(), F.Resize((224,224)), F.UniformAugment(transforms=transform_list, num_ops=num_ops), F.ToTensor()]) ds_ua = ds.map(input_columns="image", operations=transforms_ua()) ds_ua = ds_ua.batch(512) for idx, (image,label) in enumerate(ds_ua): if idx == 0: images_ua = np.transpose(image, (0, 2,3,1)) else: images_ua = np.append(images_ua, np.transpose(image, (0, 2,3,1)), axis=0) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = np.mean((images_ua[i]-images_original[i])**2) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize(images_original, images_ua) if __name__ == "__main__": test_uniform_augment(num_ops=1)